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Recent decades have witnessed the growing appreciation for the 
versatile and far-reaching roles of RNAs: beyond guiding pro-
tein biosynthesis, they regulate gene expression and modulate 

other important biological processes by various mechanisms1,2, such 
as binding proteins, recognizing metabolites and catalyzing chemi-
cal transformations. More than 85% of the human genome is tran-
scribed, but less than 3% of genome encodes proteins3, indicating 
that a large portion of transcribed RNAs have unknown functions 
and underlying structures. Furthermore, the functional capacity 
of RNAs has been expanded by in vitro selection and evolution4–6. 
High-resolution structural information is essential for understand-
ing the function of such RNAs. However, experimentally solved 
three-dimensional (3D) RNA structures remain scarce: among the 
total of ~180,000 structures presently deposited in the Protein Data 
Bank (PDB), only 0.9% are RNA structures. This reflects the diffi-
culties associated with the structural acquisition of RNAs, especially 
for large RNAs (>~100 nucleotides (nt); small RNAs of up to ~100 
nt can be studied by nuclear magnetic resonance (NMR)), which 
are studied primarily by X-ray crystallography7. First, the intrin-
sic properties of RNA, such as (1) a poorly differentiated anionic 
surface, (2) an irregular and elongated shape, and (3) conforma-
tional heterogeneity and structural flexibility, present challenges for 
obtaining crystals that diffract well. Second, phase determination 
of RNA crystals is also difficult owing to the lack of convenient and 
general strategies, such as selenomethionine substitution8 used in 
protein crystallography.

Without the need for procuring crystals and solving phase 
problems, cryo-EM is gaining increasing popularity in structural 
determination of protein-containing systems, and the resolution it 
provides is beginning to rival that of crystallography, thanks to the 
ongoing advances in instruments and computational techniques9. 
Nevertheless, cryo-EM has not been well-explored for RNAs. So 
far, there are only two reported examples of cryo-EM-determined 
RNA-only structures10–12 that have achieved a resolution of 4.5 Å 
or better. The first is the 4.5-Å structure of the Lactococcus lactis 

group IIA intron10, a large RNA containing >600 nt. The other more 
recent case is the smaller 119-nt Mycobacterium sp. MCS SAM-IV 
riboswitch12: 3.7- and 4.1-Å cryo-EM maps were reported for the 
unliganded and ligand-bound states, respectively, but large datas-
ets (~2 million initial particles) were required for cryo-EM recon-
struction. Even for the best-resolved map at 3.7 Å, the intensities for 
nucleobases are barely separate and backbone features are not well 
delineated, making the model-building process heavily dependent 
on computer modeling13.

Single-particle cryo-EM reconstruction is capable of identify-
ing different conformations by computationally classifying the par-
ticles on the basis of their 3D shapes to yield structures of discrete 
conformations, and, consequently, higher-resolution structures 
can be typically obtained from the refinement of the most popu-
lated class of particles than from the whole set of particles. Thus, in 
principle, cryo-EM holds an additional advantage in studying RNA 
structures whose misfolding propensity and structural heterogene-
ity are well-known to complicate their structural studies. However, 
structural flexibility of RNA—likely arising from the less compact 
shapes of folded RNAs14 compared to proteins and fewer extensive 
long-range tertiary interactions to stabilize the overall 3D architec-
tures7—can interfere with the cryo-EM-enabled conformational 
classification. In addition, many structured RNAs are relatively 
small (<100 kDa, or <300 nt), making it challenging to accurately 
align single-particle images owing to the low signal-to-noise ratio 
and limited spatial information.

To address the challenges in RNA cryo-EM, we herein pres-
ent ROCK, a nanoarchitectural engineering strategy derived from 
nucleic-acid nanotechnology15–19. Kissing-loop sequences are 
installed onto the peripheral stems of the target RNA to mediate 
its self-assembly into a closed homooligomeric ring. The assembled 
structure has a multiplied molecular weight and each constituent 
monomeric unit is expected to have mitigated flexibility, thus simul-
taneously addressing both challenges of small molecular weight and 
structural flexibility for RNA cryo-EM. Harnessing the capabilities 
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of ROCK, we determined the structure of the complete Tetrahymena 
group I intron20 (TetGI) at 2.98 Å resolution (2.85 Å for the core). 
The cryo-EM map presents clear features of base-to-base separa-
tion and sugar-phosphate backbone that are characteristic for RNA 
and thereby enables de novo model building of the complete TetGI, 
including the previously unknown peripheral domains. We also 
demonstrated that different regions of the TetGI can be selectively 
stabilized by configuring it into two different oligomers (dimer or 
trimer) via engineering different pairs of peripheral stems, and that 
structures corresponding to the states of the intron with and without 
bound substrate can be reconstructed. Lastly, ROCK’s general util-
ity is further validated by its application to two smaller RNAs—the 
Azoarcus group I intron (AzoGI; 206 nt) and the FMN riboswitch 
(112 nt), of which modest-resolution cryo-EM maps are readily 
obtainable from datasets of reasonable sizes and by use of more 
accessible instruments. These maps allow us to capture the confor-
mational change of the AzoGI from closed to open conformations 
after splicing, and to delineate the ligand-binding environment of 
the FMN riboswitch, demonstrating the potential of cryo-EM for 
studying RNA dynamics and RNA-binding molecules.

Results
RNA construct engineering for cryo-EM. Construct engineering 
is a common strategy in RNA crystallography7,21 and many methods 
of general applicability have been developed, including the install-
ment of the tetraloop–tetraloop receptor interaction22 and the intro-
duction of binding proteins, such as U1A protein23,24 or antibody 
fragments25,26. The main purpose of construct engineering in crys-
tallography is to create preferred intermolecular crystal-packing 
interactions for mediating crystal growth and, at the same time, 
dampening structural flexibility by locking the molecules in ordered 
lattice. For crystallography, because the effects of construct engi-
neering are difficult to predict, and diffraction quality assessment 
and data collection can be performed very fast thanks to the techni-
cal advances at synchrotron beamlines, various constructs of a tar-
get RNA are routinely prepared and screened in a high-throughput 
fashion. In contrast, cryo-EM remains a low-throughput and expen-
sive technique, calling for a high success rate if construct engineer-
ing is to be deployed.

Taking the advantage of the programmability of RNA and the 
advances in nucleic-acid nanotechnology15–19, ROCK involves ratio-
nally designing RNA constructs to self-assemble into a homomeric 
closed ring via installing kissing-loop sequences onto the peripheral 
helices without perturbing the functional core of the RNA (Fig. 1a; 
see Supplementary Note 1 for the considerations in choosing the 
7-bp kissing-loop motif27 throughout this work). Compared with a 
stand-alone RNA, the assembled ring structure is more amenable 
to cryo-EM structure determination (Fig. 1b and Extended Data 
Fig. 1a,b). First, the assembled structure has a multiplied molecular 
weight and a characteristic, symmetric shape, substantially stream-
lining cryo-EM experiments and reconstruction. Second, each con-
stituent monomeric unit is expected to have mitigated flexibility due 
to the geometric restraints imposed by the kissing loops-mediated 
ring closure—this is analogous to quaternary structures that are 
often observed in proteins28 but are rare in known natural RNA 
structures29,30. Third, the self-assembled system also facilitates the 
experimental procedures of folding optimization and native purifi-
cation (Extended Data Fig. 1b). This helps eliminate the misfolding 
and conformational heterogeneity that are well-known to compli-
cate the functional and structural studies of RNAs.

The lengths of the stems onto which the kissing-loop sequences 
are installed need to be optimized to ensure formation of a ring (a 
closed structure) instead of other linear or spiral assemblies (open 
structures; Extended Data Fig. 1c). Promising constructs can be 
readily designed in silico with software such as NanoTiler31 and 
experimentally validated by native polyacrylamide gel electrophore-

sis (PAGE), which also helps determine the optimal folding/assem-
bly condition and enables the native purification of the desired 
oligomer containing correctly folded RNA subunits (Fig. 1c).

Engineering the TetGI for homomeric self-assembly. To dem-
onstrate the utility of ROCK, we chose the TetGI for an in-depth 
case study because it is a representative and challenging RNA struc-
ture: it is the first discovered and most iconic catalytic RNA20 and, 
as one of the most interrogated folded RNA molecules, serves as 
a rewarding model for research of RNA biochemistry and struc-
tural biology32,33; however, its complete structure was unknown in 
the roughly four decades following its discovery. Figure 2a presents 
the secondary structure (shown as the pre-2S state, that is the state 
before the second step of splicing) of the TetGI derived from previ-
ous prediction34,35 and amended by this work. Besides the catalytic 
core34 (containing P4–P6, P3–P9 and P1–P10 domains) conserved 
for all group I introns, the TetGI, as a subgroup IC1 intron, also 
possesses peripheral P2–P2.1 and P9.1–P9.2 domains (or domains 2 
and 9, respectively; Fig. 2b). Though a number of partial structures 
of the TetGI have been determined by crystallography (including 
the P4–P6 domain36,37 and the core38,39; see Supplementary Table 1 
for representative solved group I intron structures), its complete 
structure has not been determined at high resolution. Nonetheless, 
the complete TetGI has been modeled computationally based on 
phylogeny, biochemistry data and a number of distance constraints 
that were derived from long-range tertiary interactions34,35 before 
crystal structures were available.

The TetGI catalyzes two consecutive phosphotransesterification 
reactions, and we chose two of its reaction states for our construct 
designs. Figure 2c presents a state initially designed as the post-2S 
(the state after the second step of splicing) complex. Two deoxy sub-
stitutions were introduced at the splice junction (u–1 and u+1) of 
the ligated exon mimic (TetLEM) to prevent the reverse reaction of 
the second step of splicing40. In attempting to prepare this construct, 
we observed that the intron RNA was cleaved co-transcriptionally 
between U20 and U21 (Extended Data Fig. 2a,b), likely owing to the 
formation of a hairpin at the 5′ sequence (Extended Data Fig. 2c). 
Therefore, the truncated intron RNA, when hybridized to TetLEM 
(Fig. 2d), can also be regarded as the trans-acting ribozyme (for 
endonucleolytic reaction41) in complex with its oligonucleotide sub-
strate. Figure 2d shows the other reaction state, termed pre-2SΔ5′ex, 
corresponding to the pre-2S complex40 but without the 5′ exon. This 
construct is formed by two fragments: an in vitro-transcribed (IVT) 
RNA corresponding to the 5′ fragment of the TetGI through nucleo-
tide A386 and a chemically synthesized 37-nt chimeric oligonucle-
otide (dTetCIRC) corresponding to the intron’s 3′ fragment and 3′ 
exon. We introduced mutations to the 5′ sequence of the IVT RNA 
(along with the compensatory mutations to the 3′ exon sequence 
of dTetCIRC to maintain P10) to prevent the possible formation 
of the aforementioned hairpin presumably responsible for the 5′ 
cleavage (Extended Data Fig. 2b,c). Because the TetGI is suscep-
tible to hydrolysis at the 3′ splice site42 in the absence of the 5′ exon 
(Extended Data Fig. 2d–f), we introduced two deoxy substitutions 
in dTetCIRC at G414 and a+1 (the u+1a mutation introduces an 
additional base pair at the base of P10, potentially improving the 
construct’s rigidity40) to inhibit this hydrolysis reaction (Extended 
Data Fig. 2g–j). Compared to the post-2S complex, the pre-2SΔ5′ex 
complex has P9.0 and P10 covalently linked, which is anticipated to 
help rigidify the architecture40 and therefore is beneficial for obtain-
ing a higher-resolution structure.

According to the knowledge gained from the previous structural 
and functional studies, P6b, P8 and P9.2 extend away from the cata-
lytic core and do not participate in tertiary interactions; therefore, 
we chose these three stems for ROCK engineering. In this work, 
three TetGI constructs are designed and studied by cryo-EM: two 
dimeric constructs (Fig. 2e), TetGI-D and TetGI-DS, designed as 
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the post-2S and pre-2SΔ5′ex states, respectively; and a post-2S 
trimeric construct (Fig. 2f), TetGI-T. Another dimeric construct 
designed by engineering P6b and P8 failed to give a high yield of 
the desired dimer and was not further studied (Supplementary 
Fig. 1). We note that, during the preparation of this paper, a 6.8-Å 
cryo-EM structure of the TetGI in the trans-acting ribozyme form 
was reported13, and its structural information, although not used in 
the present study, can guide construct engineering.

Sub-3-Å cryo-EM structure of the TetGI-DS construct. The 
best-resolved cryo-EM map of the TetGI was obtained from the 
TetGI-DS construct (Fig. 2d,e). The characteristic shape of the 
TetGI-DS homodimer, clearly visible from the raw micrographs 
(Extended Data Fig. 3a) and two-dimensional (2D) class averages 
(Fig. 3a and Extended Data Fig. 3b), facilitates particle-picking and 
initial alignment. Reconstruction of the dimer with C2 symmetry 
delivered a cryo-EM map of a modest 3.92-Å resolution (see Fig. 3b 
for the whole dimer, and Fig. 3c for the symmetrized monomer, or 
the C2 monomer). Symmetry-expansion (SE) allows finer 3D clas-
sification of the monomers, and subsequent refinement yielded a 
map of a substantially improved resolution (Fig. 3d and Extended 
Data Fig. 3c–e): as estimated by the Fourier shell correlation (FSC) 
curves (Fig. 3e), the overall resolution for the SE monomer is 2.98 Å 
at FSC = 0.143, with the core arriving at 2.85-Å resolution, supe-
rior to the best-resolved group I intron to date, the 3.10-Å AzoGI 
crystal structure40. This represents the first sub-3-Å cryo-EM map 
obtained for an RNA-only structure and enables the de novo model 
building of the complete TetGI (Fig. 3f,g). In this map, fine details of 
structural features pertaining to the sugar-phosphate backbone and 
nucleobases are resolved (Fig. 3h; see Supplementary Fig. 2 for com-
paring the features of different X-ray and EM maps). To demonstrate 
the excellent map quality, we show that the intensities for individual 
bases are well separated without breaking the backbone continuity at 
a wide range of contour levels (Fig. 3i), that the distinct geometries 

of different types of base pairs can be readily recognized (Fig. 3j,k), 
and, notably, that features corresponding to the exocyclic amino 
groups are visible (blue arrows in Fig. 3i–k). Additionally, we can 
visualize the strong intensities of ordered native Mg2+ ions (Fig. 3l;  
see Supplementary Fig. 3 for the Mg2+ ions at the A-rich bulge of 
P4–P6 domain), which have important roles in RNA folding and 
sometimes serve as ligands in RNA catalysis43.

Assembly, activity and cryo-EM analyses of TetGI-D and -T. Both 
TetGI-D and TetGI-T are constructs designed in the post-2S state, 
enabling their parallel comparison. Because the cation contents 
(species and concentrations) can substantially influence RNA fold-
ing and assembly44, we tested the assembly of TetGI-D and TetGI-T 
(along with the monomer control, TetGI-M) in different annealing 
buffers. We then analyzed the assemblies by native PAGE as shown 
in Fig. 4a. Indeed, different annealing buffers resulted in different 
assembly patterns and the maximum yields of the desired dimer for 
TetGI-D (lanes 4 and 5) and the desired trimer for TetGI-T (lanes 10 
and 11) were obtained in a buffer containing no Na+ and 1 or 3 mM 
Mg2+. We note that the optimal Mg2+ concentrations for yielding the 
desired oligomers are close to the previously determined optimal 
concentration (2 mM) for TetGI folding45, implying that the homo-
meric self-assembly system can serve as a read-out platform for 
optimizing RNA-folding conditions. Consequently, we assembled 
the TetGI-D dimer and TetGI-T trimer in large scale with 3 mM 
Mg2+ and purified them by preparative native PAGE for the subse-
quent activity assays and cryo-EM analyses.

To ensure the catalytic activity of the engineered, assembled 
constructs, we assayed their trans-acting endonucleolytic activity41  
(Fig. 4b). The reaction kinetics for TetGI-M, TetGI-D and TetGI-T 
are almost identical within the first 15 minutes of reaction when less 
than 50% of substrate is cleaved, indicating that the activities of the 
engineered TetGI subunits within the homomeric assemblies are 
not notably affected. Interestingly, TetGI-D and TetGI-T are slightly 
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Fig. 1 | Conceptualization and workflow of ROCK. a, Engineering a target RNA for the self-assembly of a closed homomeric ring through installing 
kissing-loop sequences onto the functionally nonessential peripheral helices. Throughout this work, we use a 7-bp kissing-loop motif that adopts an 
included angle of ~120° based on its NMR structure27 (PDB: 2BJ2). b, Tabulated comparison of the properties of stand-alone RNA and assembled RNA 
shows that the latter utilized in our method is more amenable to cryo-EM structural determination. c, Workflow of ROCK. The peripheral helices of 
the target RNA onto which kissing-loop sequences are installed (highlighted by light red shadows) are located. Computational design involves length 
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slower in cleaving the remaining substrate than is TetGI-M, prob-
ably owing to the tighter binding of the product to the homooligo-
mers (that is, via the avidity effect), which would limit the reaction 
rate46 more significantly in the later stages of the assayed reaction.

Figure 4c shows the cryo-EM map of the C2 dimer of TetGI-D. 
SE of the dimer allows finer 3D classification (Extended Data  
Fig. 4a–e), revealing two conformations that are different in P1  
(Fig. 3d,e, Extended Data Fig. 4c and Supplementary Video 1): 
Fig. 4d shows the conformation with double-stranded P1 docked 
between the P4–P6 and P3–P9 domains47–49 (Extended Data  
Fig. 4c); Fig. 4e shows the conformation without TetLEM bound, 
and the internal guide sequence (IGS) remains single-stranded and 
interacts with the minor groove of P2.1. Except for P1, these two 
conformations are almost identical, so the final refinement was 
conducted by combining these two classes, resulting in a final map 
(Fig. 4f and Extended Data Fig. 4c) with a better resolved core (core 
resolution is 3.68 Å overall resolution is 3.78 Å) than either class. 
The cryo-EM reconstruction of TetGI-T (Fig. 4g,h and Extended 
Data Fig. 5a–e) was similarly performed, and its resolution (over-
all 4.17 Å, core 4.10 Å) is lower than that of the TetGI-D (Fig. 4i). 
The overall architectures of the cryo-EM structures of TetGI-D 
and TetGI-T are mostly consistent with each other, and only subtle 
differences are observed in the helical directions of P6b and P9.2 
owing to the different geometric restraints applied (Fig. 4j). Because 
TetGI-D has a higher overall resolution than TetGI-T, the map qual-

ity of TetGI-D is better than TetGI-T in most parts of the structure 
as indicated by the atom-averaged local resolution (Fig. 4k) and 
map intensity (Fig. 4l) calculated for each residue. However, for the 
peripheral P2.1 and P9.1–P9.2 regions, the map quality of TetGI-T 
is comparable to or even better than TetGI-D, reflecting the reduced 
conformational dynamics of these regions in TetGI-T owing to 
P9.2 being geometrically restrained in the assembled trimer. This 
result demonstrates the effectiveness of using cyclic oligomerization 
to mitigate structural flexibility and suggests that different regions 
can be preferentially stabilized by being configured within different 
oligomeric constructs.

Structural insights into the TetGI’s peripheral domains. Our 
cryo-EM structures of the TetGI support the configurations of 
peripheral (P2–P2.1 and P9.1–P9.2) domains predicted by the 
decades-old computationally predicted model35 and corroborated 
by a recent modest-resolution (6.8-Å) cryo-EM structure13. As 
expected for a subgroup IC1 intron, P2–P2.1 connects P4–P6 and 
P9.1–P9.2 via the tertiary base-pairings of P14 and P13, respec-
tively, constituting a pseudo-continuous belt enclosing the core 
(Fig. 5a). Besides the overall structural organization, the present 
high-resolution cryo-EM structures provide a clearer view of the 
structural elements involving the peripheral domains (five impor-
tant structural elements are highlighted by red dashed circles; see 
the descriptions for Fig. 5b,c below, and Extended Data Fig. 6a–c 
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2SΔ5′ex construct).
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for the tertiary interaction of P13, the four-way junction joining  
P9.1–P9.2 and P9a–P9b, and the junction connecting P2–P2.1 with 
P1 and P3–P8). The tertiary interaction P14 (Fig. 5b) consists of 
U43, G44 and C45 (p14′) pairing with A172, C170 and G169 (p14″), 
respectively, and an unexpected feature of P14 is the unpaired A171, 
which does not pair with U43 as previously predicted35. Also nota-
ble is that the bulged A210 from P4—which has been suggested 
to destabilize the folding of the isolated P4–P6 domain37 and was 
either eliminated (ΔA210 or ΔC209, refs. 25,37) or mutated (A210G, 
ref. 39) in previous structural studies—participates in a long-range 
base-triple with the noncanonical C41-A46 pair (inset of Fig. 5b), 
possibly serving to stabilize P14. On the side of domain 9, we dis-
covered a new long-range tertiary contact involving the interac-
tion of G358 from J9.1/9.1a and the minor groove of P7 (Fig. 5c). 

This contact has likely functional implications because (1) a similar 
contact involving the peripheral P7.2 and the P7 also occurs in the 
Twort group I intron50 (TwoGI, a subgroup IA2 intron; Extended 
Data Fig. 6d–f) and (2) the purine-rich internal loop of J9.1/9.1a is 
conserved in different subgroup IC1 and IE introns possessing the 
peripheral pseudo-continuous helix of P2.1–P13–P9.1a (Extended 
Data Fig. 6g), implying the presence of this new visualized contact 
in these introns. Considering the reaction site is located on the 
major-groove side of P7, this newly visualized tertiary contact is 
likely to buttress the reaction site from the other side. Preceding 
biochemical and chemical probing studies51,52 indicate that domain 
9 functions to stabilize the P3–P7 region, and its removal affects 
some of the intron’s reactions involving the 3′ exon. However, previ-
ously, the major focus of the function of domain 9 has been directed 
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to the apical loop of P9.1a (that is, p13″) as its participation in the 
P13 interaction is readily predicted by sequence complementarity35. 
Here, our ROCK-enabled high-resolution structures provide an 
additional structural basis for the role of domain 9.

J8/7 and active-site magnesium ions of TetGI. In TetGI-DS (a pre-
2SΔ5′ex construct), the IGS is left single-stranded, prompting us to 
compare J8/7 (functioning as a docking site for P1) of this construct 
with that of the AzoGI crystal structure40 (with a double-stranded 
P1–P2; the AzoGI’s P1–P2 is equivalent to the TetGI’s P1) and of 
the TetGI core structure39 (without P1 or the IGS). As shown in 
Fig. 5d, the configurations of J8/7 in TetGI-DS and the AzoGI are 
nearly identical. Some discrepancies lie in the bound metal ions. 
For instance, we localize a Mg2+ ion, which is not present in the 
AzoGI structure40, interacting with the phosphate oxygen atoms of 
A301 and A302 (corresponding to the AzoGI’s A167 and A168), 
and this Mg2+ ion has been predicted to stabilize the stack-exchange 
junction at P3–P8 (ref. 53). As our cryo-EM model and the previous  

X-ray model39 of the TetGI differ considerably in J8/7 (Fig. 5e, 
left), we attempted to use our cryo-EM structure to rebuild and 
re-refine the X-ray model. Upon doing so, we observed substan-
tial improvement of the X-ray map quality and refinement statistics 
(Supplementary Fig. 4), and the structure differences in this region 
are largely eliminated (Fig. 5e, right). These results indicate that J8/7 
is pre-organized for P1 docking, and also demonstrate the utility of 
cryo-EM structures in improving the RNA model building that has 
been difficult for low-resolution X-ray data.

In the TetGI-DS structure, we observed an active-site Mg2+ 
(Fig. 5f) corresponding to M1 in the AzoGI ribo-ΩG pre-2S crys-
tal structure54. M1 functions as an activator of the nucleophile and 
the scissile phosphate in the second step of splicing55–58, and its 
presence in the 5′ exon-free pre-2SΔ5′ex intron suggests its pos-
sible role of activating a water molecule as the nucleophile of the 
3′ splice site hydrolysis reaction42. However, the other metal M2 
(stabilizing the leaving group in the second step of splicing59) in 
the AzoGI structure is not observed in TetGI-DS, likely owing to 
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the deoxy substitution of ΩG (G414 for the TetGI), which lacks the 
2′-OH coordinating to M2 (ref. 56) (M2 is present in the deoxy-ΩG 
pre-2S AzoGI crystal structure40 as a monovalent metal, but in our 
cryo-EM study, the only metal ion present is Mg2+). The incapability 
of recruiting a divalent cation at M2 site thus is likely the cause for 
the suppression of the 3′ splice site hydrolysis reaction by deoxy-ΩG 
mutation (Extended Data Fig. 2i). Nonetheless, M2 could be spot-
ted in the cryo-EM map of TetGI-D, which has a native ribo-ΩG 
(Fig. 5g; M1 could not be confidently built in TetGI-D owing to the 
limited resolution). In our structures, we could not unambiguously 
localize the possible third active-site metal ion implicated in some 
functional studies56.

Extending the application of ROCK to smaller RNA targets. To 
demonstrate the general utility of ROCK, we next set out to assess 
it for smaller RNA structures below 100 kDa and with more afford-
able, lower-performance instruments (Polara microscope with K2 
camera, rather than Krios microscope with K3 camera for the TetGI 
structures; Methods and Supplementary Table 3). The AzoGI is a 
subgroup IC3 intron of 206 nt (~70 kDa), and compared with the 
TetGI, it lacks the extensive peripheral domains that help stabilize 
the overall structure. Both the smaller molecular weight and the 
presumed higher flexibility make the AzoGI a more challenging 
target for cryo-EM, although its smaller size and simpler fold make 

it more attractive for crystallographic studies40,54,60. On the basis of 
its crystal structures, we designed a post-2S trimeric construct of 
the AzoGI, AzoGI-T, by engineering P5a and P8a (Fig. 6a,b; see 
Supplementary Fig. 5 for a dimeric construct designed by engineer-
ing P6a and P8a, which was not further pursued owing to its similar-
ity to TetGI-D). Similar to the TetGI-D and TetGI-T (which are also 
post-2S constructs, as shown in Fig. 2c), two deoxy substitutions 
are introduced in the in-trans added ligated exon mimic (AzoLEM). 
Using a workflow (Extended Data Figs. 7a–d and 8a–e) similar to 
that for the TetGI constructs, we obtained a 4.9-Å structure (Fig. 
6c,d) corresponding to a conformation with P1–P10 tightly docked  
(Fig. 6e), which is from the most populated class from 3D classifica-
tion (Extended Data Fig. 8c) and is similar to the post-2S AzoGI 
crystal structure60. We also reconstructed the cryo-EM map from 
another class of particles corresponding to an alternative open con-
formation (Fig. 6f). Although this map is of a substantially lower 
resolution (~8 Å), the relative movement of P2–P1–P10 and P4–P5 
could be clearly discerned (Fig. 6f and Supplementary Video 2). 
Such a large conformational change has not been observed among 
different constructs in previous crystallographic studies40,54,60 of 
the AzoGI, likely owing to the constraint applied by the similar 
crystal-packing interfaces.

Lastly, we used ROCK to solve an even smaller target—the 
Fusobacterium nucleatum FMN riboswitch of 112 nt (~35 kDa). 
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On the basis of its crystal structure61, we installed the kissing-loop 
sequences onto P1 and P4 for a homotrimeric assembly (Fig. 6g,h; 
referred to as FMNrbsw-T). Interestingly, the RNA of FMNrbsw-T 
assembles into two different homooligomers, dimer or trimer, 
when annealed in different buffer conditions (Extended Data Fig. 
9a–c). Ligand-binding assays (Extended Data Fig. 9d,e) show that 
the RNA within the expected trimer is in its functionally relevant 
conformation, whereas the dimer is less competent in ligand bind-
ing and is likely a kinetic product or as a result of an alternate con-
formation of the apo riboswitch62. The trimer was natively purified 
and mixed with the FMN ligand, and then subjected to cryo-EM 
analysis (Extended Data Fig. 10a–e). Due to the small size, the final 
refinement was conducted on the whole trimer particles with one 
monomer focused (Extended Data Fig. 10c), resulting in a 5.9-Å 
resolution cryo-EM map of the focused monomer (Fig. 6i,j). The 
bound ligand, along with its binding environment, can be visualized 
in this modest-resolution cryo-EM map owing to the strong map 
intensities of the ligand and its vicinity (Fig. 6k), probably as a result 
of the more restricted motion of the ligand-binding site relative to 
the peripheries (Supplementary Video 3). While we attribute the 
limited resolutions for AzoGI-T and FMNrbsw-T to their smaller 
sizes and increased structural flexibility compared with the TetGI 
constructs, or to the less sophisticated instruments, we could not 
exclude the possibility that other experimental variables, such as ice 
thickness, may also affect the achievable resolution.

Technical requirements of ROCK. Here we share important tech-
nical requirements of ROCK. First, the workflow of ROCK starts 

with construct engineering that requires the RNA having at least 
two functionally nonessential helices for installing kissing-loop 
sequences. For natural RNAs, nonessential helices can typically 
be identified by phylogenetic analysis of homologs from different 
organisms63, and two nonessential helices can be readily identified 
within a homolog possessing more extensive peripheral elements. 
Second, construct engineering can be substantially facilitated by 
the knowledge of the relative spatial positions of the nonessential 
helices to be engineered, which can be obtained from solved homo-
logs or partial structures (for example by crystallography or NMR), 
computer modeling35, atomic force microscopy64, small-angle X-ray 
scattering65, comparative gel electrophoresis66, and preliminary 
low-resolution cryo-EM models13. It is worth noting that a known 
structure is not a prerequisite for construct engineering: for instance, 
for designing TetGI-T, we used the computationally predicted model 
by Westhof and coworkers in 1996 (ref. 35), which preceded the 
appearance of the crystal structure of any complete group I intron. 
Lastly, for all structural-biology studies, one must ensure the bio-
logical meaningfulness of the obtained structures. Specifically for 
ROCK, to exclude the possibility that de novo-designed oligomer-
ization alters the native structures and functions, we have assayed 
the activities of the engineered, assembled RNAs.

Discussion
In this work, we have determined the cryo-EM structures of three 
RNAs with sizes ranging from ~35 to ~140 kDa and belonging to 
two important categories of functional RNAs—ribozymes and ribo-
switches—demonstrating the general utility of ROCK. The core of 
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ROCK is construct engineering for homooligomeric self-assembly, 
which facilitates the whole pipeline of RNA cryo-EM determina-
tion from RNA-folding optimization to cryo-EM reconstruction. 
Previous RNA cryo-EM studies11–13 aiming for high-resolution 
structures typically entail collecting large datasets, which makes the 
workflow experimentally and computationally demanding, and do 
not identify different conformational states. (After the initial submis-
sion of our work (preprint accessible at https://doi.org/10.1101/202
1.08.11.455951v1), Su et al. independently reported cryo-EM struc-
tures of the TetGI from stand-alone RNA constructs by collecting 
large datasets67. Their best-resolved structure at 3.06-Å resolution 
(~3.0 Å for the core) is of the pre-2S state, which is close to our pre-
2SΔ5′ex (TetGI-DS) construct at 2.98-Å resolution (2.85 Å for the 
core). It is worth noting that Su et al. used 2.8 times as many particles 
as ours (SE monomers; Extended Data Fig. 3c) in the final refine-
ment.) In contrast, our strategy directly deals with RNA’s intrinsic 
molecular features that fundamentally limit the obtainable resolu-
tion: nonfunctional structural dynamics are mitigated with geomet-
ric restraints, and sample homogeneity is improved by natively 
purifying the target homooligomers. Furthermore, the resulting 
symmetric assemblies are also preferred targets for cryo-EM recon-
struction: (1) the characteristic shapes are more convenient for 
initial alignment of the particles; and (2) special data-processing 
procedures, such as SE and individual subunit-focused classifica-
tion and refinement, can be utilized to achieve higher resolution 
and obtain structures of different conformations.

ROCK substantially improves the utility and performance of 
cryo-EM in RNA structural studies, making it a complementary 
approach68 to the currently more prevalent X-ray crystallography 
with respect to construct choice, conformational dynamics, and 
accessible structural information (see Supplementary Note 2 for 
detailed discussions). For example, we demonstrate that native 
Mg2+ ions can be localized in the cryo-EM maps of different 
TetGI constructs with resolution ranging from 2.98 to 4.17 Å. This 
cryo-EM approach to metal ion localization is complementary to 
X-ray crystallography, where, at similar or worse resolutions typi-
cally obtained for large RNAs, heavy metals are often introduced as 
mimics of small native metals by crystal soaking to provide anoma-
lous scattering signals. Future development of ROCK may poten-
tially generate RNA cryo-EM structures of higher resolution via the 
introduction of additional structure-stabilizing RNA-RNA interac-
tions or RNA-binding proteins. ROCK will also benefit from the 
advances of computational tools for RNA cryo-EM map interpreta-
tion and model building to address the challenges that have not been 
encountered in protein cryo-EM or RNA X-ray crystallography. 
Taken together, we believe that ROCK will help further unleash the 
largely unexplored potential of cryo-EM in RNA structural studies, 
opening new opportunities for elucidating the mechanisms of func-
tional RNAs and potentially facilitating structure-based approaches 
to RNA-targeting therapeutics69.
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Methods
RNA construct design. The software NanoTiler31, developed by B. Shapiro’s group 
(website: https://fscnpl-bnkly01p.ncifcrf.gov/software.html), was used to design 
the RNA constructs with kissing loops installed for homomerization. Throughout 
this work, we chose the 7-bp kissing-loop motif which is adapted from the RNA 
I–RNA II complex of the Escherichia coli ColE1 plasmid70 and has been determined 
by NMR27 (PDB: 2BJ2) to have an included angle of ~120°. For TetGI-D and 
TetGI-DS, the design was based on crystal structure39 of the core domains of the 
TetGI (PDB: 1X8W). Before being imported into NanoTiler as structural modules, 
the PDB files of 1X8W (the TetGI core) and 2BJ2 (the 7-bp kissing-loop motif) 
were first edited so that the helices (P6b and P8 for the TetGI core, and the two 
stems of the 7-bp kissing-loop motif) to be connected in the final construct were 
trimmed to 3 bp. Then NanoTiler’s command ‘clone’ was used to generate another 
copy of these structural models; commands ‘genhelixconstraint’ and ‘opthelices’ 
were used to generate ideal A-form RNA helices of certain lengths for connecting 
the TetGI core and the 7-bp KL; the ‘start_score’ in the output of the ‘opthelices’ 
for placing the last connecting helix indicates how good the ring closure is, with a 
lower value indicating more favorable ring closure. The processes can be automated 
with the ‘NanoScript’ of NanoTiler in which ‘foreach’ loops can be incorporated 
to iterate through connecting helices of different lengths to perform the screening 
of the optimal lengths for ring closure. Similarly, the trimeric construct TetGI-T 
was designed based on the computational model35 of the complete TetGI kindly 
provided by E. Westhof; AzoGI-T based on the crystal structure40 of the AzoGI 
(PDB: 1U6B); and FMNrbsw-T based on the crystal structure61 of the FMN 
riboswitch bound to FMN (PDB: 3F2Q). After installing the kissing-loop sequence 
and connector helices onto the peripheral stems of each target RNA, the secondary 
structure of each newly formed stem-loop was further checked by Mfold71 to 
ensure that the new stem-loop folds correctly.

RNA preparation and nanostructure assembly. All RNA molecules were 
synthesized by in vitro transcription (IVT) using the HiScribe T7 High Yield RNA 
Synthesis Kit from the New England Biolabs (NEB). The corresponding DNA 
templates for in vitro transcription were the PCR products of gene fragments 
(sequences shown in Supplementary Table 2) ordered from WuXi Qinglan Biotech. 
The PCR experiments were conducted using the Q5 Hot Start High-Fidelity 
DNA Polymerase (NEB) following the recommended protocol provided by 
manufacturer. Primers and other modified oligonucleotides were ordered from 
the Integrated DNA Technologies (IDT). All IVT RNA molecules were purified by 
denaturing PAGE (containing 7 M urea), then ethanol-precipitated and suspended 
in pure water. The RNA concentration was determined by measuring OD260.

Protocols for RNA nanostructure assembly were adapted from a previous 
publication44. RNAs were first denatured at 85 °C for 1 min and snap-cooled on ice. 
Then, the annealing buffers containing 20 mM of Tris-acetate (pH 8.0) and varied 
concentrations of Mg2+ (using 100 mM Mg2+ stock solution containing 110 mM of 
MgCl2 and 10 mM of EDTA) and Na+ (using 1 M Na+ stock solution containing 1 M 
of NaCl) ions were added to the denatured RNAs (to a final RNA concentration of 
~800 nM). The mixtures were then annealed from 70 °C to 4 °C with the following 
protocol: 70 °C to 50 °C over 6 min, 50 °C to 37 °C over 20 min, and 37 °C to 4 °C 
over 2 hr. The annealed RNAs were analyzed by native PAGE in 0.5 × TBE buffer 
supplemented by 3 mM of MgCl2 (so that the final concentration of free Mg2+ is 
2 mM because 1 mM of EDTA is included in 0.5 × TBE). To prepare the samples 
for cryo-EM experiments, the cation contents in the annealing buffers were chosen 
based on the native PAGE results: for TetGI-DS, TetGI-D, TetGI-T and AzoGI-T, 
the annealing buffer contains 1 mM of Mg2+ and 1.2 equivalents (eqv.) of associated 
synthetic oligonucleotides (dTetCIRC for TetGI-DS; TetLEM for TetGI-D and 
TetGI-T; and AzoLEM for AzoGI-T); for FMNrbsw-T, the annealing buffer 
contains 0.3 mM of Mg2+ and 10 mM of Na+ supplemented by 1 mM of FMN. The 
assembled nanostructures were purified by preparative native PAGE, eluted to the 
annealing buffer of 3 mM Mg2+, and concentrated to ~1 µg/µL using Amicon Ultra 
centrifugal filters (MWCO 30 kDa).

Cryo-EM sample preparation and data acquisition. Before grid preparation, Mg2+ 
and other components (such as short oligonucleotides or ligand) were added to 
the purified and concentrated RNA assemblies. For the four ribozyme constructs 
(TetGI-DS, TetGI-D, TetGI-T and AzoGI-T), Mg2+ was added to a final concentration 
of 30 mM to ensure complete folding53. Additional synthetic oligonucleotide was 
added to each of the ribozyme construct in case of the dissociation at equilibrium 
or during the purification processes: for TetGI-DS, 1.2 equivalets of dTetCIRC 
was added; for TetGI-D and TetGI-T, 3 equivalents of TetLEM was added; and for 
AzoGI-T, 3 equivalents of AzoLEM was added. For FMNrbsw-T, Mg2+ was added 
to a final concentration of 10 mM, and the ligand FMN to a final concentration of 
200 µM. After the addition of Mg2+ and other components, the samples were left at 
room temperature for at least 15 minutes before grid preparation.

Each RNA sample was applied to a glow-discharged Quantifoil (R1.2/1.3, 400 
mesh) holey carbon grid. The three TetGI samples were vitrified in liquid ethane 
with a Thermo Fisher Vitrobot Mark IV (blot for ~7 s, force +12) and imaged on 
a Titan Krios microscope equipped with a Gatan K3 camera. The Krios movie 
stacks were acquired in counting mode, with a physical pixel size of 0.825 Å, total 
exposure of 47 e/Å2 and at a defocus ranging from –0.8 to –2.0 µm. The AzoGI-T 
and FMNrbsw-T samples were frozen using a Gatan Cryoplunge 3 (blot ~3 s) and 

imaged on an FEI T30 Polara microscope equipped with a K2 summit detector. 
The Polara micrographs were acquired in super-resolution mode, with 0.62-Å 
super-resolution pixel size and 52 e/Å2 exposure, with a defocus ranging from –0.8 
to –2.0 µm. SerialEM72 was used for collection of all datasets. More information 
about cryo-EM data collection can be found in Supplementary Table 3.

Cryo-EM data processing. The overall processing pipeline was similar for each 
dataset. Briefly, movie stacks were binned 2× if collected in super-resolution mode, 
then motion-corrected with MotionCor2 (ref. 73). The contrast transfer function was 
subsequently computed with CTFFIND474. Particle picking and 2D particle curation 
were performed with Simplified Application Managing Utilities of EM Labs (https://
liao.hms.harvard.edu/samuel), a set of protocols built on the SPIDER75 image 
processing system. About 2,000 particles were manually picked to generate 2D 
initial models, which were used to auto-pick 10% of the micrographs and generate 
refined 2D templates. The refined templates were then used to auto-pick from all 
micrographs. The particles were curated with ‘samtree2dv3.py’, which runs iterative 
principal component analysis (PCA), k-means clustering and multireference 
alignment. Selected particles were then imported to RELION 3.0 (ref. 76), which was 
used for all subsequent processing steps. Briefly, the particles were downsampled 
and sorted with 3D classification, before unbinning and 3D refinement with 
enforced symmetry. As the constructs include monomers of uneven integrity, 
we used symmetry expansion77 to address the pseudo-symmetry of the particles 
and separate the most stable monomers. Monomers were then classified through 
3D classification without particle alignment, and selected classes were refined 
using local angle search refinement. Monomer resolution was calculated with the 
FSC = 0.143 criterion on half maps from independent halves of the dataset, while 
local resolution was determined with ResMap78. All maps were density modified 
with ‘phenix.resolve_cryo_em’79 that is recently incorporated in PHENIX80, and no 
model information was provided to avoid any possible bias. More information about 
cryo-EM data processing can be found in Extended Data Figs. 3–5, 8 and 10.

Structure modeling. To build the structural model of the TetGI, we began with the 
core domains by rigid-body fitting the crystallographic model of the core (PDB: 
1X8W) into the TetGI-DS map using UCSF Chimera81 and performing several 
rounds of real-space refinements82 in PHENIX80. Though the crystallographic 
model mostly agreed with our cryo-EM map, two regions of the core show the 
most significant discrepancy—the region of P9.0 and G414, which were not 
present in the crystallographic model, and the region near J8/7, which we believe 
was built incorrectly in the crystallographic model (Supplementary Fig. 4). These 
two regions were manually built in COOT83. To build the peripheral domains of 
the TetGI, ideal A-form helices were generated and fitted to the TetGI-DS map 
using UCSF Chimera81 based on the known secondary structure. The rest of 
structure was manually built in COOT83. The most difficult region is P2.1 to P13, 
where the map density is relatively weaker and the secondary structure assignment 
was ambiguous. For instance, any residue from A87 through A90 could be possibly 
unpaired, and the exact number of base pairs in kissing loops P13 was not known. 
We manually tested different possibilities of secondary structure assignments 
for this region to ensure its successful joining to the helices on both sides. The 
cryo-EM map of TetGI-T was referenced to build the region of P2.1 to P13 because 
the map quality is better for this region than TetGI-DS. The complete TetGI model 
was finally real-space refined against the maps of the three TetGI constructs and 
manually checked and adjusted in COOT. The statistics of model refinement and 
validation were tabulated in Supplementary Table 3.

For AzoGI-T, we used the AzoGI crystal structure (PDB: 1U6B) as the initial 
model, which was rigid-body fitted to the AzoGI-T map using Chimera, and 
then the atomic model was iteratively improved by real-space refinements in 
PHENIX and manual adjustments in COOT. Because the final cryo-EM map for 
FMNrbsw-T is the trimer instead of SE monomer, the designed NanoTiler model 
was used as the initial model to fit the map by MDFF84, and then the atomic 
model was iteratively improved by real-space refinements in PHENIX and manual 
adjustments in COOT. All structure figures were prepared with UCSF Chimera or 
PyMOL (DeLano Scientific).

Ribozyme activity assays. To measure the trans-acting endonucleolytic activity of 
the TetGI constructs (TetGI-M, TetGI-D and TetGI-T), reactions were performed 
with 2 µM 56-FAM-labeled 10-nt RNA substrate, 0.5 µM ribozyme monomeric 
units and 1 mM GTP cofactor in 1 × ribozyme reaction buffer (10 mM sodium 
cacodylate at pH 6.8, 30 mM MgCl2) at 37 °C. For the AzoGI constructs, the activity 
assayed was based on the second step of splicing because the 3′ exon of  
the G4-a + 7 AzoGI constructs (AzoGI*-M and AzoGI*-T, see Extended Data  
Fig. 7) was not completely cleaved during IVT. Reactions were performed with 
2 µM 56-FAM-labeled 5-nt RNA substrate (mimicking 5′ exon) and 1 µM ribozyme 
monomeric units in 1 × ribozyme reaction buffer at 25 °C. Aliquots of the reaction 
mixtures were removed at various times and quenched by adding an equal volume 
of 2 × TBE–urea sample buffer (Bio-Rad) supplemented with extra 50 mM EDTA. 
Reactions were analyzed by denaturing PAGE, and the gels were visualized using a 
Sapphire Biomolecular Imager (Azure Biosystems).

Reverse transcription and polyadenylation assay. Reverse transcription (RT) 
was used to study the 5′ sequence of the TetGI constructs. The reactions were 
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performed with 0.8 µM RNA, 1.2 µM 56-FAM labeled RT primer (complementary 
to nucleotides 29 to 46 of the TetGI), 0.5 mM of each dNTP and 1 U/µL AMV 
reverse transcriptase (NEB) in 1 × AMV Reverse Transcriptase Reaction Buffer 
(supplied by manufacturer with the enzyme) for 1 hour at 42 °C. The TetGI 
5′-mimic RNA (Extended Data Fig. 2a) was prepared by IVT and analyzed by 
dideoxynucleotide sequencing85 to provide length markers for determining the 
5′ cleavage site. For these sequencing reactions, 1.25 mM of a single ddNTP 
(dideoxynucleoside triphosphate; GE Healthcare) was added to each RT reaction 
for the 5′-mimic RNA. A polyadenylation assay86 was used to determine whether 
the RNA has a 3′-hydroxyl group or a 2′,3′-cyclic phosphate group, because the 
former can be polyadenylated while the latter cannot. Polyadenylation reactions 
were performed with 200 nM RNA, 0.5 mM ATP and 24 U/µL yeast poly(A) 
polymerase (Thermo Scientific) in 1 × Poly(A) Polymerase Reaction Buffer 
(supplied by manufacturer) for 20 min at 37 °C.

Ligand-binding assays for the FMN riboswitch assemblies. The binding affinities 
of the FMN riboswitch assemblies to FMN ligand were measured on the basis of 
the fluorescence quenching of FMN upon specific binding to the riboswitch61. 
Varying concentrations (ranging from 0.1 nM to 100 nM of monomeric units) of 
the FMN riboswitch assemblies (monomer control, FMNrbsw-T dimer and trimer) 
were mixed with 60 nM FMN in 50 mM Tris-HCl (pH 7.4), 100 mM KCl and 2 mM 
MgCl2 for at least 30 min at room temperature for equilibrium before data collection. 
The fluorescence intensity was measured at 530 nm emission with 450 nm excitation 
at room temperature using a Synergy H1 Hybrid multi-mode microplate reader 
(BioTek). Each data point was measured from three independent experiments. 
Data were fitted using a two-parameter (Kd and fc) quadratic equation (4) derived 
in Extended Data Fig. 9d, implying 1:1 stoichiometry of ligand to monomeric unit. 
Data plotting and curve fitting were performed using OriginPro 2018 software.

Statistics and reproducibility. The following experiments were repeated 
three times to ensure reproducibility: ribozyme activity assays for the TetGI 
constructs (Fig. 4b) and AzoGI constructs (Extended Data Fig. 7d). The following 
experiments were repeated twice to ensure reproducibility: assembly assays for 
the TetGI constructs (Fig. 4b, Extended Data Fig. 2j and Supplementary Fig. 1b), 
the AzoGI constructs (Extended Data Fig. 7c and Supplementary Fig. 5b) and the 
FMN riboswitch constructs (Extended Data Fig. 9a–c); assays for determining the 
5′ or 3′ ends of the TetGI constructs (Extended Data Fig. 2b,f,i) and the AzoGI 
constructs (Extended Data Fig. 7b). For cryo-EM studies of TetGI-DS, TetGI-D, 
TetGI-T, AzoGI-T and FMNrbsw-T, 4,170, 4,068, 4,284, 4,884 and 3,465 raw 
micrographs were respectively collected, and the representative raw micrographs 
are shown respectively in Extended Data Figs. 3a, 4a, 5a, 8a and 10a.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are principally within the figures and 
the associated Supplementary Information. Atomic coordinates and cryo-EM maps 
have been deposited with the Protein Data Bank and the Electron Microscopy Data 
Bank under the accession codes: 7R6L and EMD-24281 for TetGI-DS, 7R6M and 
EMD-24282 for TetGI-D, 7R6N and EMD-24283 for TetGI-T, EMD-24284 for 
AzoGI-T and EMD-24285 for FMNrbsw-T. In this study, the following structures 
from the PDB were utilized: 2BJ2, 1X8W, 1U6B and 3F2Q.
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control assemblies of TetGI-M and -D. Without 3′ fragment (lanes 1 and 4), there are trailing smears for the 5′ IVT RNA, indicating incorrect folding of 
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slower-migrating bands emerged, probably due to domain swapping, that is a 3′ fragment simultaneously binds to a 5′ IVT RNA molecule to form P9.2 and 
another 5′ IVT RNA molecule to form P10.
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Extended Data Fig. 3 | Cryo-EM imaging, processing and validation for TetGI-DS. a, Representative cryo-EM image of TetGI-DS. The scale bar represents 
20 nm. b, 2D class averages of TetGI-DS. Box size is 264 Å. c, Processing flowchart for the TetGI-DS dataset. d, Angle distribution for the particles included 
in the final 3D reconstruction. e, Fourier Shell Correlation (FSC) curves of the final TetGI-DS reconstruction. Half map #1 vs. half map #2 for the entire 
monomer is shown in black. The remaining FSC curves were calculated for the core domains only: half map #1 vs. half map #2 (red), model vs. refined map 
(blue), model refined in half map #1 vs. half map #1 (green), and model refined in half map #1 vs. half map #2 (orange).
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Extended Data Fig. 4 | Cryo-EM imaging, processing and validation for TetGI-D. a, Representative cryo-EM image of TetGI-D. The scale bar represents 
20 nm. b, 2D class averages of TetGI-D. Box size is 264 Å. c, Processing flowchart for the TetGI-D dataset. 3D classification of the symmetry-expanded 
monomers results in classes according to the conformations with double-stranded P1 (green arrows) or with single-stranded IGS (red arrows). The 
ratio of the two conformations is calculated and shown. For the conformation with double-stranded P1, green and blue boxes show the details of tertiary 
contacts of P1 on the P4-P6 side and P3-P8 side, respectively. The contacts agree well with the previous biochemical studies48–50 and the crystal structure 
of AzoGI40. The final cryo-EM map for TetGI-D was refined from two classes, and exhibits a stronger map intensity of double-stranded P1 than single-
stranded IGS; therefore, the atomic model was built with double-stranded P1. d, Angle distribution for the particles included in the final 3D reconstruction. 
e, Fourier Shell Correlation (FSC) curves of the final TetGI-D reconstruction. Half map #1 vs. half map #2 for the entire monomer is shown in black. The 
remaining FSC curves were calculated for the core domains only: half map #1 vs. half map #2 (red), model vs. refined map (blue), model refined in half 
map #1 vs. half map #1 (green), and model refined in half map #1 vs. half map #2 (orange).
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Extended Data Fig. 5 | Cryo-EM imaging, processing and validation for TetGI-T. a, Representative cryo-EM image of TetGI-T. The scale bar represents 
20 nm. b, 2D class averages of TetGI-T. Box size is 317 Å. c, Processing flowchart for the TetGI-T dataset. Similar to the case of TetGI-D, 3D classification 
of the symmetry-expanded monomers of TetGI-T also results in classes according to the conformations with double-stranded P1 (green arrows) or with 
single-stranded IGS (red arrows). The ratio of the two conformations is calculated and shown, which is close to the dimeric construct TetGI-D shown in 
Extended Data Fig. 4c. The final cryo-EM map for TetGI-T was refined from two classes, and exhibits a stronger map of single-stranded IGS than double-
stranded P1, probably due to the stabilization of the peripheral domains by the trimer construct; therefore, the atomic model was built with the single-
stranded IGS. d, Angle distribution for the particles included in the final 3D reconstruction. e, Fourier Shell Correlation (FSC) curves of the final TetGI-T 
reconstruction. Half map #1 vs. half map #2 for the entire monomer is shown in black. The remaining FSC curves were calculated for the core domains 
only: half map #1 vs. half map #2 (red), model vs. refined map (blue), model refined in half map #1 vs. half map #1 (green), and model refined in half map 
#1 vs. half map #2 (orange).
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IE ((((((.-(....--(((]]]]]]])))--....).))))))
ClBSSU,1 CUCGCU-CGACUA--GGCCCUGAUCGCC--GAAGCGAGCGAG
IE ((((((-((....--(((]]]]]]])))--....))))))))
CsaSSU CCUCGU-GGAAUA--GACCCCGAUCGUC--GAAGCCUCGAGG
IE ((((((-((....--(((]]]]]]])))--....))))))))
KfSSU CCACAA-GCAAUA--GACCCCGACCGUC--AAAGGCUUGUGG
IE ((((((-((....--(((]]]]]]])))--....))))))))
RdSSU UUCUGUGCUG-GA--GCCCCCAAAAGGC--AAAGGUGCAGGA
IE (((((((((.-..--(((]]]]]]])))--...)))))))))
ReLSU UGUUAUAUUU-A--CAAGCCUGUAACUUG--AAGAUAUAACA
IE ((((((((((-.--((((]]]]]]]))))--.))))))))))
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Extended Data Fig. 6 | Newly visualized structural elements involving the peripheral domains of the TetGI. a, Structural details of the tertiary interaction 
P13. P13 is a 6-bp duplex formed by the base-pairings of U75 through U80 (p13′) and A352 through A347 (p13′), and stacks coaxially between the 
G73:C81 pair of P2.1 and the G346:C353 pair of P9.1a, bearing a conformational resemblance to some other 6-bp kissing-loop complexes88,89. A 4-nt 
bulge consisting of A69 through A72 is present near the tip of P2.1, allowing for the bent shape at the junction of P2.1 and P13. b, Structure of the four-way 
junction (4WJ) at P9a-P9b and P9.1-P9.2. Top-right inset shows the strand directions of the continuous strands of the 4WJ, indicating the flanking helices 
stacked in a left-handed parallel configuration90. Bottom-right inset shows interaction details at the crossover site. Though the overall connectivity and 
other long-range tertiary interactions may be the major determinant for the configuration of this 4WJ, the sugar-phosphate interactions of the nucleotides 
from the exchanging strands at the crossover site may contribute to the configuration of this 4WJ. c, Structure of the complex multiway junction at P1, 
P3-P8 and P2-P2.1. Insets show the details of two tertiary contacts centered by A95 (top-right) and A97 (bottom-right), respectively, stabilizing the 
juxtaposition of the pseudo-continuous helices of P2-P2.1 and P3-P8. are two tertiary interactions between the P2-P2.1 and P3-P9 domains. Within 
the A97-centered tertiary interaction (right), U300 forms a base-triple with A97:U277 pair, corroborating the previous biochemical evidence91. d, A 
similar contact is observed in the crystal structure of the Twort group I intron51 (TwoGI; PDB code: 1y0q) formed between P7 and the internal loop in 
P7.2. e, f, Comparing the tertiary interactions observed in TetGI and TwoGI (overlayed by P7). g, Sequence alignment of different class IC1 and class IE 
group I introns reveals a conserved purine-rich loop (highlighted in yellow) at J9.1/9.1a. The extracts of the alignments of 14 sequences are from Lehnert 
et al. 35, where all the sequences were regarded as subgroup IC1, but later some of them were categorized as subgroup IE92. TtLSU (intron in the large 
ribosomal RNA precursor of Tetrahymena thermophila) is the TetGI studied in this work. We note that the internal loop of J9.1/9.1a of the TetGI, which has 
the sequence of 5′-AUGA-3′/5′-GGAG-3′, is reminiscent of but not exactly the loop E motif93, which is normally 5′-AGUA-3′/5′-GAA-3′, though the 
sequence of the abovementioned internal loop in P7.2 of the TwoGI is the same as loop E motif.
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Extended Data Fig. 7 | AzoGI-T sequence design, assembly and activity. a, Two RNA designs, G4-G206 and G4-a+7, transcribed with a self-cleaving 
ribozyme (rbz) for producing a homogeneous 3′ end. Green and red scissors mark the cleavage site for the appended ribozyme or the intron itself. AzoLEM 
is the ligated exon mimic for the AzoGI, and its complexing with G4-G206 RNA forms the post-2S state of the intron. b, The PAP extension assay of 
various constructs for the AzoGI. The products from the preparation of G4-G206 RNA constructs cannot be extended by PAP (lanes 2 and 8), indicting 
a 2′,3′-cyclic phosphate generated by rbz at the 3′ end (this is different from the G14-G414 RNA of TetGI, the majority of which can be extended by PAP; 
see lane 2 of Extended Data Fig. 2f). For G4-a+7 constructs, the products generated by the cleavage of rbz and intron itself can be directly distinguished 
based on the different electrophoretic mobilities in the presented analytical gel because the former is longer due to the appendage of a 7-nt 3′ exon (the 
small size difference is not noticeable in the preparative gel for RNA purification). As shown in lanes 3 and 9, about half of G4-a+7 RNA of either construct 
is cleaved at the 3′ splice site (whereas, in the case of the TetGI G14-a+9 RNA, more than 90% is cleaved at the 3′ splice site, indicating a substantially 
higher activity of the TetGI; see lane 4 of Extended Data Fig. 2f). Only the shorter products, which is produced by intron cleavage, can be extended by 
PAP. After folding, the intron-cleaved shorter products increase to ~70% (lanes 5 and 11), and some portion of these shorter products cannot be extended 
by PAP, probably due to the lower accessibility of the 3′ end after RNA folding. c, Assembly assay of the trimeric construct AzoGI-T (lanes 2 to 5) and 
the monomer control AzoGI-M (lane 1). Similar to the TetGI constructs, the optimal condition for folding/assembly was determined to be 3 mM Mg2+. 
Interestingly, monomer control AzoGI-M runs into two major bands, indicating conformational heterogeneity that is likely due to the open and closed 
conformations of the post-2S construct. d, Activity assay to test the activity of the second step of splicing. The reactions were conducted with 1 µM 
monomer units of either intron construct and 2 µM substrate (S, reacting as the 5′ exon) at 25 °C. The assay takes the advantage of the fact that there is 
still about 30% of AzoGI*-M and AzoGI*-T constructs containing 5′ exon after IVT preparation, purification and folding due to presumably lower splicing 
activity of the AzoGI.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Cryo-EM imaging, processing and validation for AzoGI-T. a, Representative cryo-EM image of AzoGI-T. The scale bar represents 
20 nm. b, 2D class averages of AzoGI-T. Box size is 236 Å. c, Processing flowchart for the AzoGI-T dataset. d, Angle distribution for the particles included in 
the final 3D reconstruction. e, Gold-standard Fourier Shell Correlation (FSC) for the final AzoGI-T reconstruction.
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Extended Data Fig. 9 | FMNrbsw-T assembly and activity. a, b, Assembly assay. FMNrbsw-M is the monomer control. Three factors to increase the 
trimer yield: the presence of FMN ligand; high Na+; and increasing RNA concentration. c, Native PAGE (6%, in the presence of 2 mM free Mg2+) analysis 
of preassembled FMNrbsw-T trimer (lane T) under different temperatures ranging from 23 °C to 58 °C. Disassembly of the trimer starts to occur at 45 °C. 
The high thermal stability of the kissing-loop motif may contribute to the formation of the kinetic assembly of dimer because the kissing-loop formation 
may precede the complete folding of the riboswitch during annealing as suggested by its weaker ligand binding as shown in e. Lane M contains the 
low-molecular weight DNA ladder (NEB). d, Derivation of the equation to analyze the ligand binding (1:1 stoichiometry) based on fluorescence quenching. 
Data were fitted using a two-parameter (Kd and fc) quadratic Equation (4). e, Fluorescent binding assay of FMN (60 nM) with the riboswitch constructs 
conducted in 100 mM KCl and 2 mM MgCl2. Each data point is represented as mean ± s.d from three independent measurements. FMNrbsw-T dimer is 
the alternate dimeric assembly of the FMNrbsw-T RNA. The calculated Kd (nM, mean ± s.d.), fc (mean ± s.d.), and R2 are: monomer control, 30.1 ± 2.2, 
0.254 ± 0.006, 0.9961; FMNrbsw-T dimer, 91.6 ± 21.9, 0.273 ± 0.017, 0.9944; FMNrbsw-T trimer, 17.4 ± 7.6, 0.197 ± 0.020, 0.9881. The dashed blue line for 
is fitted FMNrbsw-T trimer taking [L]t as 20 nM, which assumes that each monomeric subunit in the trimer can locally sense only one third of the ligand, 
and calculated values of Kd (nM, mean ± s.d.), fc (mean ± s.d.), and R2 are: 28.8 ± 6.3, 0.188 ± 0.015, 0.9937. This adjustment results in an improved fitting 
as reflected by an improved R2.

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods


ArticlesNature Methods

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

Resolution (1/Å)

FS
C

FSC = 0.143

5.9 

a b

c

d e

Extended Data Fig. 10 | Cryo-EM imaging, processing and validation for FMNrbsw-T. a, Representative cryo-EM image of FMNrbsw-T. The scale bar 
represents 20 nm. b, 2D class averages of FMNrbsw-T. Box size is 236 Å. c, Processing flowchart for the FMNrbsw-T dataset d, Angle distribution for the 
particles included in the final 3D reconstruction. e, Gold-standard Fourier Shell Correlation (FSC) for the final FMNrbsw-T reconstruction.
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