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Other supplementary materials for this manuscript include the following:  

 

Supplementary Video 1: Performance demonstration of INSPR on simulated single-molecule 

emission patterns in biplane setup. 

Supplementary Video 2: Performance demonstration of INSPR on simulated single-molecule 

emission patterns in astigmatism-based setup. 

Supplementary Video 3: INSPR estimates wavefront distortions induced by the deformable 

mirror from single-molecule datasets of TOM20 immune-labeled with DNA-PAINT in 

fixed COS-7 cells. 

Supplementary Video 4: INSPR reconstruction of immunofluorescence-labeled TOM20 in 

fixed COS-7 cells. 

Supplementary Video 5: INSPR reconstruction of immunofluorescence-labeled Nup98 on an 

entire nucleus in fixed COS-7 cells. 

Supplementary Video 6: INSPR reconstruction of immunofluorescence-labeled amyloid β 

plaque with low-density fibrils in a 30-μm-thick brain section from a 5XFAD mouse.  

Supplementary Video 7: INSPR reconstruction of immunofluorescence-labeled amyloid β 

plaque with high-density fibrils in a 30-μm-thick brain section from a 5XFAD mouse.  

Supplementary Video 8: INSPR reconstruction of immunofluorescence-labeled ChR2-EYFP 

on dendrites in a 50-μm-thick brain section from mouse primary visual cortex. 

Supplementary Video 9: INSPR reconstruction of immunofluorescence-labeled elastic fibers 

in developing cartilage from embryonic mouse forelimbs. 

 

Supplementary Software 1: INSPR software package and user manual for biplane setup. 

Supplementary Software 2: INSPR software package and user manual for astigmatism-based 

setup.  
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Supplementary Figure 1. Localization precisions and reconstructions of simulated, axially-distributed, double-line 

structures at different imaging depths using INSPR and in vitro methods. 

(a–c) Localization precisions in the x, y, and z dimensions for different imaging depths (0, 6.7, 14.35, 27.55, and 45.4 μm). (d) x-

z views of the reconstructed double-line structures using 3D PSF models obtained from the ground truth, INSPR, phase retrieval 

from PSFs at the depth of 0 μm (PR), and theoretical PSF (no aberration, constant pupil).  
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Supplementary Figure 2. 3D PSFs and their corresponding pupils retrieved by INSPR from the dataset of 

immunofluorescence-labeled Nup98 on the entire nuclear envelope in COS-7 cells in Fig. 4e. 

Scale bar: 1 µm. Sec.: optical section.  
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Supplementary Figure 3. 3D PSFs and their corresponding pupils retrieved by INSPR from the datasets of 

immunofluorescence-labeled amyloid β plaques in mouse brains in Fig. 5. 

(a,b) x-y and x-z views of the 3D PSFs retrieved by INSPR in different optical sections, as well as the phase and magnitude of the 

corresponding pupils, from the datasets of immunofluorescence-labeled amyloid β plaques with low-density (a) and high-density 

(b) fibrils in mouse brains. Scale bar: 1 µm. Sec.: optical section. 
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Supplementary Figure 4. 3D PSFs and their corresponding pupils retrieved by INSPR from the datasets of 

immunofluorescence-labeled ChR2-EYFP on dendrites and elastic fibers in developing cartilage in Fig. 6. 

(a,b) x-y and x-z views of the 3D PSFs retrieved by INSPR in different optical sections, as well as the phase and magnitude of the 

corresponding pupils, from the datasets of immunofluorescence-labeled ChR2-EYFP on dendrites (a) and elastic fibers in 

developing cartilage (b). Scale bar: 1 µm. Sec.: optical section.  
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Supplementary Figure 5. Field-of-view dependent pupils retrieved by INSPR from the datasets of immunofluorescence-

labeled Nup98 in COS-7 cells in Fig. 4e and ChR2-EYFP on dendrites in Fig. 6a. 

(a,b) Phase of pupils retrieved by INSPR in four sub-regions of 30 μm × 30 μm imaging area from the datasets of 

immunofluorescence-labeled Nup98 in COS-7 cells (a) and ChR2-EYFP on dendrites (b). 6000 frames of blinking data from the 

first optical section are used for model generation in each dataset. (c,d) Amplitudes of 21 Zernike modes (Wyant order, from 

vertical astigmatism to tertiary spherical aberration) decomposed from the INSPR retrieved pupils in (a,b). Results shown are 

representative of the seven datasets shown in the main text. 
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Supplementary Figure 6. Performance quantification of INSPR in astigmatism-based setup. 

(a) Simulated astigmatism-based single-molecule emission patterns located randomly over an axial range from –800 to +800 nm 

with a known wavefront distortion. The amplitude of vertical astigmatism aberration is set to +1.5 (unit, λ/2π) as prior knowledge. 

(b) Phase of the in situ pupil retrieved by INSPR (left), the ground truth pupil (middle), and the residual error (right). The root-

mean-square error (RMSE) is 40.2 mλ. (c) Amplitudes of 21 Zernike modes decomposed from the INSPR retrieved pupil (blue 

diamonds) compared with the ground truth (red circles). The RMSE is 27.4 mλ for the total 21 modes. (d) x-y and x-z views of the 

INSPR retrieved 3D PSF (top row) and the ground truth PSF (bottom row). Scale bar: 1 µm. Results shown are representative of 

30 trials, whose animated demonstration is shown in Supplementary Video 2. 
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Supplementary Figure 7. Frame number color-coded cross sections of immunofluorescence-labeled TOM20 in COS-7 cells 

reconstructed using INSPR and microsphere-calibrated Gaussian fitting in astigmatism-based setup. 

(a–d) y-z slices of the reconstructed mitochondrial network on the bottom coverslip using INSPR (a,c) and microsphere-calibrated 

Gaussian fitting (b,d). (e–h) x-z slices of the reconstructed mitochondrial network with a depth of 1.5 μm using INSPR (e,g) and 

microsphere-calibrated Gaussian fitting (f,h). The integration width of the slices in (a–h) in the third dimension is 200 nm. The 

localized molecules are color coded by their frame numbers in which the molecules are detected. 
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Supplementary Figure 8. Frame number color-coded cross sections of immunofluorescence-labeled ChR2-EYFP on 

dendrites reconstructed using INSPR and phase retrieval method based on beads embedded in agarose gel in biplane setup. 

(a–d) x-z slices of the reconstructed 11-μm-deep dendrites using INSPR (a,c) and phase retrieval method based on beads embedded 

in agarose gel (hereafter referred as ‘PR in gel’, b,d). (e–h) x-z slices of the reconstructed 7-μm-deep dendrites using INSPR (e,g) 

and PR in gel (f,h). The integration width of the x-z slices in (a–h) in the y direction is 200 nm. The localized molecules are color 

coded by their frame numbers in which the molecules are detected. 
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Supplementary Figure 9. 3D super-resolution reconstructions of immunofluorescence-labeled ChR2-EYFP on dendrites 

using INSPR and in vitro methods in biplane setup (depth: 1 – 5.2 μm). 

(a) x-y overview of the super-resolution volume of immunofluorescence-labeled ChR2-EYFP on dendrites resolved by INSPR, 

with a depth of 1 μm from the coverslip. (b–d) x-z slices along the white dashed line in (a), reconstructed using INSPR (b), phase 

retrieval method based on beads on the coverslip with theoretical index mismatch model (hereafter referred as ‘PR+IMM’, c), and 

phase retrieval method based on beads on the coverslip (hereafter referred as ‘PR’, d). (e) Zoomed in x-z views of the areas (from 

left to right) as indicated by the left white boxed regions in (b–d). (f) Zoomed in x-z views of the areas (from left to right) as 

indicated by the right white boxed regions in (b–d). (g–i) x-z slices along the magenta dashed line in (a), reconstructed using INSPR 

(g), PR+IMM (h), and PR (i). (j–l) Zoomed in x-z views of the areas as indicated by the white boxed regions in (g–i). (m–o) 

Intensity profiles along the white dashed lines in (j–l), showing the difference in the axial width of the selected contour is ~26% 

for both PR+IMM and PR, as compared to INSPR. The integration width of the x-z slices in (b–l) in the y direction is 200 nm. The 

dataset shown is representative of five datasets of dendrites with a depth of ~2 μm. Norm.: normalized. 
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Supplementary Figure 10. Comparison of PSFs retrieved using INSPR and in vitro methods from the datasets of 

immunofluorescence-labeled ChR2-EYFP on dendrites in Fig. 6a and Supplementary Fig. 9. 

(a) x-y view of the 3D PSF retrieved using INSPR (left), PR (middle), and PR+IMM (right) from the dataset of 

immunofluorescence-labeled ChR2-EYFP on dendrites (depth: 2 – 6.2 μm) in Fig. 6a. (b) Typical frame from biplane blinking 

data in Fig. 6a. The yellow boxed areas show a pair of detected emission patterns. (c) x-y view of 3D PSF retrieved using INSPR 

(left), PR (middle), and PR+IMM (right) from the dataset of immunofluorescence-labeled ChR2-EYFP on dendrites (depth: 1 – 

5.2 μm) in Supplementary Fig. 9. (d) Typical frame from biplane blinking data in Supplementary Fig. 9. The yellow boxed areas 

show a pair of detected emission patterns. Scale bar in (a,c): 1 µm. 
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Supplementary Figure 11. INSPR reconstructions of microtubules in collagen embedded 3D-cultured BS-C-1 cells and 

TOM20 co-stained with α-tubulin using Exchange-PAINT in 2D cultured COS-7 cells in biplane setup. 

(a) 3D overview of super-resolved microtubules in collagen embedded 3D cultured BS-C-1 cells with a total thickness of 4.1 μm. 

(b,c) Cross sections of the super-resolution reconstruction along the orange (b) and yellow (c) planes in (a). (d) Enlarged view of 

the area as indicated by the white boxed region in (a), showing fine microtubules (right) and its counterpart under the diffraction 

limit (left). (e,f) Reconstructions of mitochondria (TOM20) and microtubules (α-tubulin) in COS-7 cells immune-labeled with 

DNA-PAINT. An x-y overview (e) and y-z slice (f) along the white dashed line in (e) are shown. The integration width of the y-z 

slice in the x direction is 200 nm. (g–i) Enlarged views of the areas as indicated by the yellow (g), magenta (h), and green (i) boxed 

regions in (e), showing interactions between microtubules and mitochondria (right) and their counterparts under the diffraction 

limit (left). The datasets shown are representative of two datasets of microtubules in collagen and two datasets of Exchange-PAINT. 
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Supplementary Figure 12. Biplane distance measurement and its impact on INSPR. 

(a) Distribution of biplane distance measured from beads in refractive index matched medium (mean±s.d.: 322±6 nm, 19 

measurements, red crosses) and beads in refractive index mismatched medium (317±9 nm, 20 measurements, blue plus signs). (b) 

Distribution of biplane distance measured from beads in refractive index matched medium (607±7 nm, 20 measurements, black 

circles) and beads in refractive index mismatched medium (585±9 nm, 22 measurements, magenta squares). (c) Detailed process 

to estimate the impact of possible biplane distance bias. The ground truth biplane distance is set to 580 nm, and 30 sets of wavefront 

shapes are generated, consisting of 21 Zernike modes with their amplitudes randomly sampled from –1 to +1 (unit, λ/2π). These 

random wavefront shapes are used to generate PSFs with random axial positions from –800 to +800 nm. Subsequently, INSPR is 

used to retrieve pupils from these PSFs with a biased input of biplane distance (from –20% to 20%) mimicking a biplane distance 

measurement error. The decomposed Zernike amplitudes from the retrieved pupil are compared with the ground truth amplitudes, 

as shown in (d). Simulated single-molecule emission patterns are then generated using ground truth wavefront distortions and axial 

positions ranging from –500 to +500 nm with a step size of 100 nm. The retrieved pupils are used to localize these emission patterns 

and their localization biases caused by the inaccurate biplane distance inputs are shown in (e). (d) RMSE between the decomposed 

Zernike amplitudes of the INSPR retrieved pupils using an inaccurate biplane distance input and the ground truth amplitudes (30 

trials for each bias). On each box, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th 

and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers, and the outliers are 

plotted individually using the plus signs. Points are considered outliers if they are greater than 𝑞ଷ  1.5 ൈ ሺ𝑞ଷ െ 𝑞ଵሻ or less 

than 𝑞ଷ െ 1.5 ൈ ሺ𝑞ଷ െ 𝑞ଵሻ, where 𝑞ଵ and 𝑞ଷ are the 25th and 75th percentiles of the data, respectively. (e) Axial localization biases 

at different axial positions introduced by assuming biased inputs of biplane distance when using INSPR (30 trials for each bias).  
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Supplementary Figure 13. Goodness-of-fitting of INSPR and in vitro methods. 

(a–j) Comparisons of histograms of goodness-of-fitting metric of INSPR with in vitro methods cross datasets included in the 

manuscript. LLR: log-likelihood ratio described in ‘Rejection methods’ section. Cspline: the PSF model is built by using cubic 

spline from fluorescent beads attached on the coverslip. Gaussian: the PSF model is built by using microsphere-calibrated Gaussian 

fitting. Ext.: extended. Supple.: supplementary. 
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Supplementary Figure 14. 3D super-resolution reconstructions of immunofluorescence-labeled amyloid β plaques in mouse 

brains and elastic fibers in developing cartilage using INSPR in biplane setup. 

(a) x-y overview of the super-resolution volume of an amyloid β plaque with low-density fibrils in a mouse brain section, showing 

the positions of 40 typical individual fibrils (white lines). (b) Diffraction-limited image of (a). (c) x-y overview of the super-

resolution volume of an amyloid β plaque with high-density fibrils in a mouse brain section, showing the positions of 40 typical 

individual fibrils (white lines). (d) Diffraction-limited image of (c). (e) x-y overview of the 3.1-µm-thick developing cartilage, 

showing the positions of 15 long elastic fibers with 3–5 measurements per fiber and 7 short fibers with single measurement (yellow 

lines). (f) Diffraction-limited image of (e). 
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Supplementary Figure 15. Resolution quantifications using Fourier ring correlation (FRC). 

(a–d) x-z and y-z slices of 3D reconstructions of the mitochondrial network in Fig. 3f using the in vitro method (a,c) and INSPR 

(b,d). The white arrows highlight the difference between two methods. (e–h) Enlarged y’-z views of the outer membrane structures 

reconstructed using the in vitro method (e,g) and INSPR (f,h). (i–p) Typical FRC curves from 20 random measurements for the 

datasets in (a–h). 
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Supplementary Table 1. Imaging parameters for experimental data. 

Datasets 
Frames 
per step 

Number 
of steps 

Number 
of cycles 

Total 
frames 

Thickness 
(μm) 

Center 
depth 
(μm) 

Mean 

ඥCRLB୶,୷

 (nm) 

Mean 

ඥCRLB

 (nm) 

Mean 
photon 
count 

Mean 
background 

count 

Number of 
localizations 

Fig. 3f 
(TOM20) 

2,000 6 20 240,000 ~2.5 ~10.3 
8.2 (x) 
7.2 (y) 

21.3 5,951 144.2 1,052,610 

Fig. 4a 
(Nup98) 

2,000 5 10 100,000 ~3.3 ~1.7 
9.2 (x) 

10.4 (y) 
33.8 2,531 34.2 622,142 

Fig. 4e  
(Nup98) 

1,000 14 10 140,000 ~6.4 ~3.2 
9.3 (x) 

10.4 (y) 
35.0 2,498 34.9 381,054 

Fig. 5a 
(amyloid β) 

2,000 5 9 90,000 ~3.7 ~7.9 
7.2 (x) 
7.3 (y) 

28.9 5,419 99.2 586,109 

Fig. 5k  
(amyloid β) 

2,000 5 14 140,000 ~3.3 ~14.7 
8.7 (x) 
8.6 (y) 

32.8 4,138 104.2 1,090,760 

Fig. 6a  
(ChR2-EYFP) 

2,000 7 9 126,000 ~4.2 ~4.1 
7.8 (x) 
6.8 (y) 

28.1 4,942 84.1 886,838 

Fig. 6h  
(elastic fibers) 

2,000 5 13 130,000 ~3.1 ~15.6 
11.4 (x) 
11.1 (y) 

44.6 3,043 138.5 1,988,098 

Extended Data Fig. 4 
(TOM20) 

2,000 6 25 300,000 ~2.0 ~14.0 
8.0 (x) 
7.9 (y) 

26.1 3,434 84.8 2,237,989 

Extended Data Fig. 5a  
(TOM20) 

2,000 1 75 150,000 ~1.3 ~0.7 
5.9 (x) 
7.4 (y) 

17.3 3,243 44.7 1,451,024 

Extended Data Fig. 5g  
(TOM20) 

2,000 1 30 60,000 ~1.4 ~2.2 
6.7 (x) 
5.7 (y) 

20.4 6,351 172.9 805,269 

Extended Data Fig. 9a 
(ChR2-EYFP) 

2,000 8 14 224,000 ~4.3 ~13.2 
10.7 (x) 
10.1 (y) 

35.9 3,875 141.1 735,193 

Extended Data Fig. 9g 
(ChR2-EYFP) 

2,000 8 13 208,000 ~4.0 ~9.0 
11.1 (x) 
9.8 (y) 

36.1 3,816 122.9 990,732 

Supple. Fig. 9  
(ChR2-EYFP) 

2,000 7 8 112,000 ~4.2 ~3.1 
7.6 (x) 
7.4 (y) 

28.7 5,113 124.2 642,870 

Supple. Fig. 11a  
(α-tubulin) 

2,000 7 10 140,000 ~4.1 ~2.1 
7.2 (x) 
7.4 (y) 

28.0 2,849 39.1 1,459,461 

Supple. Fig. 11e  
(α-tubulin) 

2,000 1 46 92,000 ~1.7 ~0.9 
8.0 (x) 
8.6 (y) 

35.0 2,497 38.8 1,876,043 

Supple. Fig. 11e  
(TOM20) 

2,000 1 50 100,000 ~1.9 ~1.0 
7.8 (x) 
7.9 (y) 

36.5 2,956 54.9 1,410,818 
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Supplementary Table 2. Parameter settings of INSPR for performance test based on wavefront 

distortions induced by a deformable mirror. 

 

  

Zernike-based 
aberrations 

Amplitude 
(λ/2π) 

𝐼ୱୣ 
(photons) 

Number of 
sub-regions Sim୫୧୬ 𝑁 Z_shift_mode 

Ast 
+1 80 5,025 0.5 25 Shift 
–1 80 4,978 0.5 25 Shift 

DAst 
+1 80 4,948 0.5 25 Shift 
–1 85 4,933 0.5 25 Shift 

Coma x 
+1 70 5,053 0.5 25 Shift 
–1 85 4,990 0.5 25 Shift 

Coma y 
+1 75 4,959 0.5 25 Shift 
–1 70 4,888 0.5 25 Shift 

1st Sph 
+1 45 4,831 0.6 25 No shift 
–1 35 4,829 0.6 25 No shift 

Trefoil x 
+1 50 5,114 0.5 25 Shift 
–1 50 5,069 0.5 25 Shift 

Trefoil y 
+1 45 5,088 0.5 25 Shift 
–1 40 5,160 0.5 25 Shift 

2nd Ast 
+1 35 5,058 0.6 15 Shift 
–1 45 4,959 0.6 15 Shift 

2nd DAst 
+1 45 5,145 0.6 25 Shift 
–1 50 5,110 0.6 25 Shift 

2nd Coma x 
+1 60 5,055 0.5 15 No shift 
–1 55 4,942 0.5 15 No shift 

2nd Coma y 
+1 45 5,157 0.5 25 No shift 
–1 60 5,155 0.5 25 No shift 

2nd Sph 
+1 60 4,879 0.6 25 No shift 
–1 90 5,067 0.5 15 No shift 

Tetrafoil x 
+1 65 5,020 0.6 25 No shift 
–1 60 5,001 0.6 25 No shift 

Tetrafoil y 
+1 60 5,032 0.5 25 No shift 
–1 55 5,036 0.5 25 No shift 

2nd Trefoil x 
+1 35 5,053 0.5 25 No shift 
–1 40 4,815 0.5 25 No shift 

2nd Trefoil y 
+1 35 4,770 0.5 25 No shift 
–1 35 5,073 0.5 25 No shift 

3rd Ast 
+1 40 5,045 0.5 25 No shift 
–1 40 4,935 0.5 25 No shift 

3rd DAst 
+1 45 5,126 0.5 25 No shift 
–1 45 4,839 0.5 25 No shift 

3rd Coma x 
+1 60 4,880 0.5 25 No shift 
–1 50 4,949 0.5 25 No shift 

3rd Coma y 
+1 85 5,021 0.5 25 No shift 
–1 80 4,941 0.5 25 No shift 

3rd Sph 
+1 75 5,083 0.6 25 No shift 
–1 65 5,115 0.6 25 No shift 
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Common parameters used for INSPR include the sub-region size of 40 × 40 pixels, 𝑑୲୦୰ୣୱ୦ of 28, 𝐼୧୬୧୲ of 

30, 𝑑௧ of 145 nm, and XY_shift_mode of ‘together shift’.  

Ast: vertical astigmatism; DAst: diagonal astigmatism; Coma x: horizontal coma; Coma y: vertical coma; 

1st Sph: primary spherical; Trefoil x: horizontal trefoil; Trefoil y: vertical trefoil; 2nd Ast: secondary 

vertical astigmatism; 2nd DAst: secondary diagonal astigmatism; 2nd Coma x: secondary horizontal coma; 

2nd Coma y: secondary vertical coma; 2nd Sph: secondary spherical; Tetrafoil x: horizontal tetrafoil; 

Tetrafoil y: vertical tetrafoil; 2nd Trefoil x: secondary horizontal trefoil; 2nd Trefoil y: secondary vertical 

trefoil; 3rd Ast: tertiary vertical astigmatism; 3rd DAst: tertiary diagonal astigmatism; 3rd Coma x: tertiary 

horizontal coma; 3rd Coma y: tertiary vertical coma; 3rd Sph: tertiary spherical.  
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Supplementary Table 3. Resolution results using Fourier ring correlation (FRC). 

Datasets Reconstruction methods Resolution results (mean±s.d., 20 trials, unit: nm)
Supple. Fig. 15a In vitro 56±2 
Supple. Fig. 15b INSPR 40±2 
Supple. Fig. 15c In vitro 45±1 
Supple. Fig. 15d INSPR 47±2 
Supple. Fig. 15e In vitro 53±4 
Supple. Fig. 15f INSPR 36±2 
Supple. Fig. 15g In vitro 47±4 
Supple. Fig. 15h INSPR 43±3 
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Supplementary Notes 

1. Supplementary demonstrations of INSPR 

1.1.  Comparison of simulated nanoscale structures at different imaging depths 

We calculated the localization precision in x, y, and z dimensions according to our previously estimated 

optical aberrations1 (Supplementary Fig. 1a–c). As the depth increased, the localization precision in the z 

dimension deteriorated significantly (Supplementary Fig. 1c). Then we evaluated the performance limits 

of INSPR by reconstructing simulated, axially-distributed, double-line structures at different imaging 

depths to show the impact of inaccurate fitting models on the reconstructions, especially along the axial 

dimension (Supplementary Fig. 1d). The x-z views of the structure were reconstructed using the ground 

truth pupil, 3D PSF models retrieved by INSPR, phase retrieved PSF at the depth of 0 μm2,3 (PR), and 

theoretical PSF with no aberration. At 0 μm depth, the structures reconstructed using INSPR and PR were 

nearly identical with the ground truth, while the reconstruction using theoretical PSF was tilted. At depths 

of 6.7, 14.35, and 27.55 μm, the structures reconstructed using INSPR were still close to reconstructions 

using the ground truth PSF, while reconstructions using in vitro PR and theoretical PSF showed obvious 

distortions. At 45.4 μm depth, the structure reconstructed using INSPR started to appear tilted as compared 

to the ground truth. Moreover, as the depth increased, even if we used the ground truth PSF to carry out 

localization, the structure in the z direction still became much more blurred than that in the x direction, 

which also reflected the deteriorated axial localization precision (Supplementary Fig. 1c). It is because 

when imaging too deep, the information content of single-molecule emission pattern is reduced 

significantly in the axial direction and cannot be recovered by analytical/numerical techniques. 

 

1.2.  Comparison of PSFs and corresponding pupils among different specimens 

To illustrate the difference of INSPR retrieved 3D PSFs among different samples, we listed the PSFs 

retrieved from the datasets of immunofluorescence-labeled TOM20 in COS-7 cells (Extended Data Fig. 

6c), Nup98 in COS-7 cells (Supplementary Fig. 2), amyloid β plaques in mouse brains (Supplementary 

Fig. 3), ChR2-EYFP on dendrites (Supplementary Fig. 4a), and elastic fibers in developing cartilage 

(Supplementary Fig. 4b). We found these retrieved 3D PSFs varied significantly among different samples, 

which demonstrated the existence and variation of sample-induced aberrations.  

Also, we compared the pupils in four sub-regions of the 30 μm × 30 μm imaging area (Supplementary Fig. 

5), retrieved by INSPR from the datasets of immunofluorescence-labeled Nup98 in COS-7 cells in Fig. 4e 

and ChR2-EYFP on dendrites in Fig. 6a. 6000 frames from the first optical section of the blinking data 
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were used for model generation in each dataset. Comparing the phase of the four pupils (Supplementary 

Fig. 5a,b) and their decomposed Zernike amplitudes (Supplementary Fig. 5c,d), we observed that the 

pupil difference among these four sub-regions was small. These data suggest that due to the limited field 

of view (FOV) and emission path design, using the same pupil in the entire acquisition area for each optical 

section is valid. On the other hand, in cases where the designed FOV is large4,5, INSPR can be useful to 

treat FOV-dependent aberrations by generating multiple in situ PSF models across the FOV.  

 

1.3.  Comparing INSPR with ZOLA-3D and cubic spline in astigmatism-based setup 

We tested the performance of INSPR in astigmatism-based setup. We used INSPR to retrieve a known 

wavefront distortion from single-molecule emission patterns simulated randomly within an axial range of 

±800 nm (Supplementary Video 2 for 30 random trials and Supplementary Fig. 6 for an example). The 

known wavefront distortion consisted of 21 Zenike modes (Wyant order, from vertical astigmatism to 

tertiary spherical aberration), where the amplitude of vertical astigmatism was set to +1.5 (unit, λ/2π) as 

prior knowledge, and the amplitudes of the rest aberrations were randomly sampled from –1 to +1 (unit, 

λ/2π). INSPR successfully retrieved the in situ pupil with a phase error of 38±19 mλ (measured by root-

mean-square error (RMSE), mean±s.d., Supplementary Fig. 6b, Supplementary Video 2), and a Zernike 

amplitude error of 26±12 mλ for the total 21 modes (measured by RMSE, Supplementary Fig. 6c, 

Supplementary Video 2). The INSPR retrieved 3D PSF showed high similarity with the ground truth PSF 

(Supplementary Fig. 6d). 

We imaged immunofluorescence-labeled TOM20 in COS-7 cells in the astigmatism-based setup, where the 

deformable mirror was used to induce vertical astigmatism with an amplitude of +1.5 (unit, λ/2π). We 

reconstructed the interconnected mitochondrial network using INSPR, ZOLA-3D6, and cubic spline from 

beads on the coverslip7, where the imaged structures were at a depth of 13 μm from the coverslip (Extended 

Data Fig. 4). We observed improved performance using ZOLA-3D compared with cubic spline, as ZOLA-

3D allowed incorporation of theoretically calculated index mismatch aberration in the PSF models. When 

compared with INSPR, reconstructions using ZOLA-3D and cubic spline methods resulted in broader 

distribution of membrane profiles and slightly compressed cross sections (~15%) which were caused by the 

sample-induced aberrations, – not accountable in these in vitro methods.  
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1.4.  Comparing INSPR with microsphere-based fitting in astigmatism-based setup 

We compared INSPR with a localization method which pinpointed the axial positions of single molecules 

by Gaussian fitting based on microspheres coated with fluorescent molecules8. The original development 

demonstrated its performance for astigmatism-based super-resolution imaging within 1.2 μm range above 

the coverslip. We followed this method to attach Alexa Fluor 647 labeled microspheres on the coverslip 

(Online Methods). To decrease statistical uncertainties, we recorded 2–3 microspheres in one FOV 

simultaneously. For each microsphere, we measured the center ሺ𝑥, 𝑦ሻ and the radius 𝑅 and then acquired 

single-molecule blinking data of this microsphere. We extracted the position ሺ𝑥, 𝑦ሻ of each single molecule 

as well as its widths 𝜎௫ and 𝜎௬ by Gaussian fitting. By using 𝑥, 𝑦, 𝑥, 𝑦, and 𝑅, we obtained the depth z 

of each molecule from 𝜌ଶ  ሺ𝑅 െ 𝑧ሻଶ ൌ 𝑅ଶ , where ρ ൌ ඥሺ𝑥 െ 𝑥ሻଶ  ሺ𝑦 െ 𝑦ሻଶ  is the lateral radial 

position to the center of the microsphere. Then we generated a series of 60-nm sliding windows in the axial 

direction, and arranged all the detected emission patterns into these windows according to their depths. For 

the emission patterns in each sliding window, we calculated the mean (𝜇௪) and standard deviation (𝜎௪) of 

their 𝜎௫ and 𝜎௬, and rejected those with 𝜎௫ or 𝜎௬ greater than 𝜇௪  1.5𝜎௪ or less than 𝜇௪ െ 1.5𝜎௪. After 

that, the calibration curve was obtained by fitting the mean 𝜎௫ and 𝜎௬ in each sliding window as a function 

of z position9,10. 

We first compared the performance of INSPR and microsphere-calibrated Gaussian fitting within its 

expected working range by reconstructing immunofluorescence-labeled TOM20 in COS-7 cells on the 

bottom coverslip in the astigmatism-based setup (Extended Data Fig. 5a–f). The outer membrane contours 

resolved by using INSPR and microsphere-calibrated Gaussian fitting showed that both two methods 

worked well in this range (Extended Data Fig. 5b–e).  

We then compared the performance of INSPR and microsphere-calibrated Gaussian fitting outside its 

working range (Extended Data Fig. 5g–l). We reconstructed immunofluorescence-labeled TOM20 in 

COS-7 cells in the astigmatism-based setup using these two methods, where the imaged structures were at 

a depth of 1.5 μm from the coverslip. We found the structures reconstructed using microsphere-calibrated 

Gaussian fitting were elongated along the axial direction, while INSPR still worked well (Extended Data 

Fig. 5h–k). Besides, we showed the cross sections with localized molecules color coded by their frame 

numbers in which the molecules were detected (Supplementary Fig. 7), which demonstrated that the 

observed elongation was not caused by the axial drift of the sample during data acquisition or alignment 

inaccuracies, but by localization imprecisions and biases due to the inaccurate fitting model.  
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1.5.  Comparing INSPR with phase retrieval methods using beads in gel in biplane setup 

We compared INSPR with another localization algorithm using 3D PSF obtained from beads embedded in 

agarose gel11 (hereafter referred as ‘PR in gel’), whose refractive index was similar to that of the imaging 

medium. We incubated fluorescent beads embedded in agarose gel (Online Methods), imaged isolated 

beads at different imaging depths, used phase retrieval to get the 3D PSF model, and then used this in vitro 

model for localization. 

We applied both methods to reconstruct immunofluorescence-labeled ChR2-EYFP on dendrites with 

depths of 11 μm and 7 μm inside a 50-μm-thick mouse brain section in the biplane setup (Extended Data 

Fig. 9). By using INSPR, the membrane contours labeled by ChR2-EYFP could be reconstructed in both 

lateral and axial dimensions, while the reconstruction using PR in gel showed distorted axial cross sections 

and broader membrane profiles (Extended Data Fig. 9b–e, h–k). Besides, we showed the cross sections 

with localized molecules color coded by their frame numbers in which the molecules were detected 

(Supplementary Fig. 8), which demonstrated that the observed distortion was not caused by the axial drift 

of the sample during data acquisition or alignment inaccuracies, but by localization imprecisions and biases 

due to the inaccurate PSF model.  

This result shows that although using PR in gel considers the index mismatch aberration, it remains an in 

vitro calibration and therefore cannot account for sample-induced aberrations which vary from sample to 

sample, and are prominent in tissue specimens. 

 

1.6. Comparing INSPR with phase retrieval methods with/without the theoretical index mismatch 

model in biplane setup 

We compared INSPR with phase-retrieval based localization algorithm with/without theoretical index 

mismatch model2,3 (hereafter referred as ‘PR+IMM/PR’) in a biplane setup by reconstructing tissues with a 

depth up to 17 μm (Extended Data Figs. 8, 10, Supplementary Fig. 9). INSPR clearly resolved the 

membrane contours immunofluorescence-labeled by ChR2-EYFP on dendrites as well as the 

immunofluorescence-labeled elastic fibers in developing cartilage, highlighted by the axial cross sections, 

while in vitro methods result in reconstruction artifacts and poor resolvability (Extended Data Fig. 8, 

Supplementary Fig. 9). We added comparison among the blinking datasets of immunofluorescence-

labeled ChR2-EYFP on dendrites in mouse brains and the 3D PSFs retrieved by INSPR and in vitro methods 

(Supplementary Fig. 10), which provides additional evidence in raw detected images showing INSPR’s 

ability of extracting observed emission shapes from single-molecule emission patterns. 
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We found that due to tissue-induced aberrations, incorporating theoretical IMM in PR-PSF plays a small 

role when the imaging depth is within 5 μm in tissues where dominate aberration modes are coma and 

diagonal astigmatism (Extended Data Fig. 8, Supplementary Figs. 9, 10). However, when imaging at 

larger depths, incorporating IMM will increase the reconstruction fidelity (Extended Data Fig. 10) by 

making its PSF closer to that retrieved from INSPR than that without considering index mismatch aberration.  

 

1.7.  Application of INSPR in 3D cultured cells and Exchange-PAINT imaging in biplane setup 

As a supplementary application of INSPR in the biplane setup, we performed reconstructions of 

immunofluorescence-labeled α-tubulin in collagen embedded 3D-cultured BS-C-1 cells, as well as 

Exchange-PAINT imaging12 in COS-7 cells (Supplementary Fig. 11). Compared to 2D monolayer cells 

cultured on flat coverslips, 3D cultured cells can mimic the in vivo cell behaviors realistically and provide 

useful physiological information13. A 28.1 μm × 28.1 µm × 4.1 µm volume of microtubules grown in 

collagen embedded 3D-cultured BS-C-1 cells was reconstructed, where fine and dense microtubules 

covering the nuclear envelope were resolved (Supplementary Fig. 11a–d), showing the capability of 

INSPR to resolve nanoscale structures in different culture systems. INSPR was further utilized in Exchange-

PAINT imaging, where mitochondria and microtubules were sequentially resolved with high resolution 

(Supplementary Fig. 11e–i), showing the potential capability of INSPR when using multiplexed super-

resolution labeling approaches.  

 

1.8.  Localization precision estimated by Cramér-Rao lower bound 

We estimated the mean localization precision by Cramér-Rao lower bound10 (CRLB, as described in 

‘Calculation of Cramér-Rao lower bound’ section) for each single-molecule dataset (Supplementary 

Table 1), which is ~8 nm in lateral and ~21 nm in axial dimensions for the dataset in Fig. 3f (TOM20), ~8 

nm in lateral and ~26 nm in axial dimensions for the datasets in Extended Data Figs. 4, 5 (TOM20), ~10 

nm in lateral and ~35 nm in axial dimensions for the datasets in Fig. 4 (Nup98), ~9 nm in lateral and ~33 

nm in axial dimensions for the datasets in Fig. 5 (amyloid β plaques), ~11 nm in lateral and ~36 nm in axial 

dimensions for the datasets in Fig. 6a, Extended Data Fig. 9, and Supplementary Fig. 9 (ChR2-EYFP), 

~11 nm in lateral and ~45 nm in axial dimensions for the dataset in Fig. 6h (elastic fibers), ~7 nm in lateral 

and ~28 nm in axial dimensions for the dataset in Supplementary Fig. 11a (α-tubulin), ~8 nm in lateral 

and ~36 nm in axial dimensions for the datasets in Supplementary Fig. 11e (α-tubulin and TOM20). 
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2. Method details 

2.1.  Definition and characterization of biplane distance 

We estimated the distance between two detection planes in the biplane configuration14 (named as biplane 

distance 𝛿, Extended Data Fig. 1g) by imaging an isolated fluorescent bead on the coverslip at different 

axial positions. Intensity profiles (i.e. PSFs) in each z position were fitted with a 2D Gaussian function 

𝑓ሺ𝑥, 𝑦ሻ ൌ 𝐼𝑒
ି

ሺ௫ି௫బሻమାሺ௬ି௬బሻమ

ଶఙమ ൨
 𝑏, (1) 

where ሺ𝑥, 𝑦ሻ is the center position of each PSF, 𝐼 is the peak intensity, 𝑏 is the background, and 𝜎 is the 

standard deviation representing the width of the PSF. The modulation of the estimated standard deviation 

𝜎 in each axial position z was modeled as 
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where 𝑖 is the index of plane (𝑖 ൌ 1,2), 𝜎 is the standard deviation of the PSF when the emitter is at the 

focal plane, 𝑐  is the position of the focal plane, 𝑑  is the depth of focus, and 𝐴  and 𝐵  are empirical 

coefficients9,10. From the position of each focal plane, we obtained the biplane distance 𝛿 ൌ |𝑐ଵ െ 𝑐ଶ|.  

When imaging above the coverslip surface, due to the mismatched refractive indices between objective 

immersion and imaging media, the actual position 𝑐
ᇱ of each focal plane is shifted to 𝑐𝑛୵/𝑛୭, where 

𝑛୵ and 𝑛୭  are the refractive indices of the water-based imaging medium and the objective immersion 

medium, respectively15. Therefore, the distance between two detection planes in the imaging medium is 

changed to 𝛿𝑛୵/𝑛୭. This rescaling is only valid when the numerical aperture of the objective lens NA ≪ 1. 

Since the NA of our objective lens is 1.35, a biplane distance bias will exist. To estimate this potential bias, 

we performed biplane distance measurement in both index matched and mismatched cases and compared 

the obtained mean distance with the theoretical calculation (Supplementary Fig. 12a,b). To mimic the 

conditions when imaging on or above the coverslip, we created a 5-µm-thick sample cavity filled with 

imaging medium (for the refractive index matched medium, 𝑛ୠ୳ୣ୰ ൌ 𝑛୭ ൌ 1.406, and for the refractive 

index mismatched medium, 𝑛ୠ୳ୣ୰ ൌ 𝑛୵ ൌ 1.352 ) between two coverslips, with fluorescent beads 

attached on the upper one. When the biplane distance in index matched medium was 322 nm (mean of 19 

measurements), the rescaled biplane distance in index mismatched medium could be estimated as 322 ൈ
ଵ.ଷହଶ

ଵ.ସ
ൌ 309.6 nm, while the measured distance was 317 nm (mean of 20 measurements, Supplementary 

Fig. 12a). When the biplane distance in index matched medium was 607 nm (mean of 20 measurements), 
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the rescaled biplane distance in index mismatched medium could be estimated as 607 ൈ
ଵ.ଷହଶ

ଵ.ସ
ൌ 583.7 nm, 

while the measured distance was 585 nm (mean of 22 measurements, Supplementary Fig. 12b). Based on 

these data, we found that the biplane distance bias caused by rescaling was within 5%. By this calculation, 

we demonstrate that theoretical approximation can provide reasonable estimation of biplane distance in 

index mismatched cases for a silicone-oil-immersion objective lens while providing an alternative approach 

to measure the distance between two detection planes.  

Further, we evaluated the resulting RMSE of Zernike amplitudes and localization bias induced by a possible 

biased input of biplane distance within INSPR (Supplementary Fig. 12c–e). The ground truth biplane 

distance was set to 580 nm, and 30 sets of wavefront distortions were generated, consisting of 21 Zernike 

modes (Wyant order, from vertical astigmatism to tertiary spherical aberration) with their amplitudes 

randomly sampled from –1 to +1 (unit, λ/2π). We first used these random wavefront distortions to generate 

PSFs located randomly in an axial range of ±800 nm. Subsequently, we used INSPR to retrieve 

corresponding pupils from these PSFs with biased inputs of biplane distance (from –20% to 20%), and 

compared their decomposed Zernike amplitudes with the ground truth amplitudes. We reported the RMSEs 

of INSPR retrieved amplitudes at different bias levels of biplane distance inputs and found that they were 

generally within 20 mλ (Supplementary Fig. 12d). To quantify the potential localization biases introduced 

by inaccurate biplane distance inputs, we generated simulated PSFs using ground truth wavefront 

distortions and axial positions ranging from –500 to +500 nm with a step size of 100 nm. We then used the 

retrieved pupils (as described above) to localize these PSFs and compared with their ground truth positions 

to calculate the localization biases (Supplementary Fig. 12e). We found that inaccurate biplane distance 

introduced biases in axial localization, and these introduced biases were more prominent at large axial 

ranges and small near focus. Increasing biplane distance bias increases axial localization bias. When the 

input biplane distance bias was within 5% from the ground truth, the observed localization bias was 

generally within 5 nm in the axial direction (Supplementary Fig. 12e). 

 

2.2.  Calibration of deformable mirror 

The calibration of the deformable mirror (DM) was achieved according to previously described methods1,16. 

The response of the membrane surface of the DM can be decomposed into an orthogonal set of mirror 

deformation modes (DM modes), resembling Zernike-based aberration modes for describing the aberrations 

in an optical system17. We selected 23 DM modes related to Zernike modes from vertical astigmatism to 

tertiary spherical aberration (Wyant order) for calibration. For each DM mode, we retrieved pupil functions 

using a phase retrieval algorithm2,3 for 9 different input amplitudes (–4, –3, –2, –1, 0, 1, 2, 3, 4; unit, λ/2π) 
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by imaging isolated fluorescent beads on the coverslip at 11 different axial positions (in an axial range from 

–2 to +2 µm with a step size of 400 nm). The amplitudes of 32 Zernike modes (Wyant order, from vertical 

astigmatism to quaternary spherical aberration) were extracted for different input amplitudes in each DM 

mode. The amplitude relationship between DM mode and Zernike mode can be described as 

Φୈሺ𝑖, 𝑗ሻ ൌ  𝑐ሺ𝑖, 𝑗ሻ𝑍 ,

ଷ

ୀହ

 (3) 

where Φୈሺ𝑖, 𝑗ሻ describes the 𝑖th DM mode with input amplitude j (j = –4, –3, –2, –1, 0, 1, 2, 3, 4; unit, 

λ/2π), 𝑍 and 𝑐ሺ𝑖, 𝑗ሻ describe the 𝑛th Zernike mode and its corresponding amplitude (the first four Zernike 

modes, piston, x-tilt, y-tilt, and defocus, are removed here). By linearly fitting through the amplitudes of 

Zernike modes as a function of DM mode amplitudes, the relationship between DM mode and Zernike 

mode can be expressed as  

Φୈ
ᇱ ሺ𝑖ሻ ൌ  𝑐

ᇱ ሺ𝑖ሻ𝑍 ,

ଷ
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where Φୈ
ᇱ ሺ𝑖ሻ describes the 𝑖th DM mode, 𝑍 describes the 𝑛th Zernike mode, and 𝑐

ᇱ ሺ𝑖ሻ is its fitting 

amplitude. By solving Eq. (4) with least-squares, each Zernike mode was expressed as a linear combination 

of DM modes. 

We then tested the calibration accuracy for 21 Zernike modes (Wyant order, from vertical astigmatism to 

tertiary spherical aberration). For each Zernike mode, we retrieved pupil functions for amplitudes at ±1 

(unit, λ/2π) by imaging a fluorescent bead on the coverslip at different imaging depths, decomposed the 

pupil functions into 21 Zernike modes, and obtained their retrieved amplitudes. To eliminate the influence 

of the aberrations induced by the imaging system itself, we calculated the difference between the retrieved 

amplitudes of the test Zernike mode at amplitudes of +1 and –1 (unit, λ/2π), and divided this difference by 

2. After processing 21 Zernike modes, we built a heat map representing the relationship between the input 

and phase retrieved amplitudes of Zernike modes (Extended Data Fig. 2d). We observed that this heat 

map always got the largest estimation along the diagonal elements. The average error between the input 

and phase retrieved amplitude along the diagonal elements was 6% in the first 14 Zernike modes and 27% 

in the last 7 Zernike modes. Besides, we calculated the RMSE between the 21 phase retrieved amplitudes 

and the 21 input amplitudes (only the test mode has an amplitude of 1, and the amplitudes of other modes 

are all 0, unit, λ/2π) for each Zernike mode, and got an average RMSE of 13 mλ for the total 21 test modes.  

 



33 
 

2.3.  Characterization of sCMOS camera 

The characterization of sCMOS camera (including the offset, variance, and gain for each pixel on the 

camera) was estimated according to previously described methods18. Briefly, the offset 𝑜 for pixel 𝑞 on 

the camera was obtained by performing a temporal average on 20,000 frames acquired with the camera’s 

entrance port being covered, as 

𝑜 ൌ
1
𝑀

 𝑠


ெ

ୀଵ

, (5) 

where 𝑠
 is the ADU count at frame 𝑚 for pixel 𝑞, and 𝑀 is the total frame number.  

The variance 𝑣𝑎𝑟 for pixel 𝑞 was obtained by calculating 
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To estimate the gain for each pixel, we imaged a fluorescent plastic slide (92001, Chroma) using the 642-

nm laser at different illumination intensities (20,000 frames were recorded in each intensity level). By using 

the Moore-Penrose pseudo-inverse algorithm, the gain 𝑔 for pixel 𝑞 was obtained as 

𝑔 ൌ ൫𝐵𝐵
்൯
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𝐵𝐴

்,  (7) 

𝐴 ൌ ൛൫𝑣
ଵ െ 𝑣𝑎𝑟൯, ⋯ , ൫𝑣

 െ 𝑣𝑎𝑟൯, ⋯ , ൫𝑣
ே െ 𝑣𝑎𝑟൯ൟ,  (8) 

𝐵 ൌ ൛൫𝐷
ଵ െ 𝑜൯, ⋯ , ൫𝐷

 െ 𝑜൯, ⋯ , ൫𝐷
ே െ 𝑜൯ൟ, (9) 

where 𝑣
 and 𝐷

 stand for the temporal variance and average of the ADU counts (20,000 frames) for the 

𝑛th illumination intensity in pixel 𝑞, respectively, and 𝑁 is the total number of illumination intensity levels. 

 

2.4.  Data acquisition 

The SMLM setup is extremely susceptible to sample drift in the axial direction for its long data acquisition 

time, typically from tens of minutes to hours. To compensate this drift, we implemented a focus stabilization 

module19. Before fluorescence imaging, we recorded a series of bright-field images of the sample along the 

axial direction (from –1 to +1 µm, with a step size of 100 nm) as reference images. During fluorescence 

imaging, we recorded a real-time bright-field image of the sample after each acquisition cycle (1000 or 

2000 frames, depending on the sample stability), and compared the similarities between this real-time image 
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and reference images by calculating their 2D correlation. The correlation values of the most similar 

reference image and its nine adjacent images, together with their z positions, were fitted with third degree 

polynomials. The z position corresponding to the maximum correlation value in the fitting curve was treated 

as the sample drift. Then we moved the objective lens in the inverse direction to compensate this drift. In 

this way, focus stabilization can be achieved during data acquisition. 

The single-plane dataset for DM calibration (as described in ‘Calibration of deformable mirror’ section) 

was collected by imaging a fluorescent bead on the coverslip over an axial range from –2 to +2 µm with a 

step size of 400 nm, and taking 10 frames per step with a frame rate of 5 Hz. The amplitude of each DM 

mode was set to be –4, –3, –2, –1, 0, 1, 2, 3, and 4 (unit, λ/2π). 

The biplane dataset for camera calibration (as described in ‘Characterization of sCMOS camera’ section) 

was collected by imaging a fluorescent slide. With the cap covered on the camera’s entrance port, 20,000 

frames were collected with a frame rate of 50 Hz to calculate the offset and variance of the readout noise 

for each pixel. With illumination from the 642-nm laser at nine different intensities (from 20 to 300 photons), 

20,000 frames were collected with a frame rate of 50 Hz for each illumination level to estimate the gain for 

each pixel. The datasets in astigmatism-based setup shared the same region with those of plane 1 in biplane 

setup. 

The biplane datasets for testing the accuracy of DM calibration (Extended Data Fig. 2d), measuring the 

biplane distance (Extended Data Fig. 1g), and building the in vitro model (Fig. 3f–s, Extended Data Figs. 

6–10, Supplementary Fig. 9) were separately collected by imaging fluorescent beads on the coverslip or 

in the agarose gel over an axial range from –1.5 to +1.5 μm with a step size of 100 nm, and taking 50 frames 

per step with a frame rate of 10 Hz. The biplane distance (as described in ‘Definition and characterization 

of biplane distance’ section) was estimated to be 580 nm for distorted wavefront control (Fig. 2e,f), 286 

nm for imaging Alexa Fluor 647 labeled mitochondria (Fig. 3f–s), 568 nm for imaging dendrites with 

depths of 7 μm and 11 μm (Extended Data Fig. 9), and 558 nm for all the other imaging sessions (Figs. 

4–6, Supplementary Figs. 9, 11). 

The biplane datasets for measuring the biplane distance in different conditions (Supplementary Fig. 12a,b) 

were collected by imaging fluorescent beads in different imaging media over an axial range from –1.5 to 

+1.5 μm with a step size of 50 nm, and taking 3 frames per step with a frame rate of 5 Hz. The biplane 

distance was set to ~600 nm (Supplementary Fig. 12a) and ~300 nm (Supplementary Fig. 12b). 

The astigmatism-based dataset for building the in vitro cubic spline model (Extended Data Fig. 4) was 

collected by imaging fluorescent beads on the coverslip over an axial range from –1 to +1 μm with a step 

size of 50 nm, and taking 50 frames per step with a frame rate of 10 Hz (~5 beads in each dataset, 3 datasets 
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in total). Here we used DM to induce vertical astigmatism with an amplitude of +1.5 (unit, λ/2π). Due to 

instrument imperfections, the setup itself has vertical astigmatism with an amplitude of –0.3 (unit, λ/2π), 

so the resulting vertical astigmatism has an amplitude of +1.2 (unit, λ/2π) as prior knowledge.  

The astigmatism-based dataset for obtaining the calibration curve from microspheres (Extended Data Fig. 

5) was collected by imaging Alexa Fluor 647 labeled microspheres on the coverslip. The microsphere 

sample was first illuminated with the transmitted light to record a bright-field image at the equatorial plane 

of the microspheres, which was used to measure both the radius 𝑅  and the center ሺ𝑥, 𝑦ሻ  of each 

microsphere. Then the objective lens was moved axially to the selected imaging depth. Before fluorescence 

imaging, bright-field images of this region were recorded over an axial range from –1 to +1 μm with a step 

size of 100 nm as reference images for focus stabilization. Then the blinking data were collected at the 

illumination of the 642-nm laser. The laser power was 17 kW/cm2 to get low density of molecules. 1000 

frames were collected per cycle with a frame rate of 50 Hz and ~15 cycles were collected.  

In biological imaging (Figs. 2f, 3f–s, 4–6, Extended Data Figs. 4, 5, 9, Supplementary Figs. 9, 11), the 

sample was first excited with the 642-nm laser at a low intensity of ~50 W/cm2 to find a region of interest. 

The depth from this region to the bottom coverslip was measured by recording a first position of the 

objective lens when the dusts on the bottom coverslip were in focus, then recording a second position of 

the objective lens when the region of interest was in focus. The difference between these two recorded 

positions was treated as the depth of this region. Before fluorescence imaging, bright-field images of this 

region were recorded over an axial range from –1 to +1 μm with a step size of 100 nm as reference images 

for focus stabilization. Then the blinking data were collected at a laser intensity of 2–6 kW/cm2 and a frame 

rate of 50 Hz. For distorted wavefront control (Fig. 2f), 2000 frames were collected for each Zernike-based 

aberration mode with its amplitude set at ±1 (unit, λ/2π). For single-section imaging (Extended Data Fig. 

5, Supplementary Fig. 11e–i), 2000 frames were collected per cycle and ~50 cycles were collected. For 

multi-section imaging (Figs. 3f–s, 4–6, Extended Data Figs. 4, 9, Supplementary Figs. 9, 11a–d), the 

sample was scanned axially by translating the objective lens with a step size of 400 nm in biplane setup and 

250 nm in astigmatism-based setup from the bottom to the top of the sample. 1000 or 2000 frames were 

collected for each cycle in one optical section, 5–14 optical sections were collected according to the 

thickness of the sample, and 8–25 cycles were collected in total (Supplementary Table 1).  

 

2.5.  PSF generation 

According to scalar diffraction theory20, the PSF of an imaging system can be calculated from the Fourier 

transform of the pupil function as 
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𝜇ሺ𝑥, 𝑦, 𝑧ሻ ൌ หℱൣ𝑃ሺ𝑘௫, 𝑘௬ሻ𝑒ଶగ௭൧ห
ଶ

, (10) 

where 𝜇ሺ𝑥, 𝑦, 𝑧ሻ  describes the PSF at position ሺ𝑥, 𝑦, 𝑧ሻ  in the sample space, ℱ  denotes the Fourier 

transform operator, and 𝑃ሺ𝑘௫, 𝑘௬ሻ is the pupil function at the back focal plane of the objective lens. The 

size of the pupil function is limited by 𝑘௫
ଶ   𝑘௬

ଶ  ቀ

ఒ
ቁ

ଶ
, where NA is the numerical aperture of the 

objective lens and 𝜆 is the emission wavelength in air. The defocus phase is described by the factor 𝑒ଶగ௭, 

where 𝑘௭ ൌ ටቀ

ఒ
ቁ

ଶ
െ 𝑘௫

ଶ െ 𝑘௬
ଶ, and 𝑛 is the refractive index of the objective immersion medium. 

The pupil function can be expressed as 

𝑃൫𝑘௫, 𝑘௬൯ ൌ 𝐴൫𝑘௫, 𝑘௬൯ ∙ 𝑒൫ೣ,൯, (11) 

where 𝐴൫𝑘௫, 𝑘௬൯  and Φ൫𝑘௫, 𝑘௬൯  are the magnitude and phase of the electric field at the pupil plane, 

respectively. Φ൫𝑘௫, 𝑘௬൯ describes the optical aberrations introduced by instrument imperfections and the 

local biological context, which can be decomposed into a series of Zernike modes21 as 

Φ൫𝑘௫, 𝑘௬൯ ൌ  𝑐𝑍ሺ𝑘௫, 𝑘௬ሻ

ே

ୀଵ

, (12) 

where 𝑍ሺ𝑘௫, 𝑘௬ሻ describes the 𝑛th Zernike mode, 𝑐 is its corresponding amplitude, and 𝑁 is the number 

of Zernike modes. In our simulations, 𝑁 was set to 25. Among these 25 Zernike modes, piston, x-tilt, and 

y-tilt do not influence the shape of the PSF, and defocus depends on the axial position, so we only 

considered the rest 21 Zernike modes (Wyant order, from vertical astigmatism to tertiary spherical 

aberration).  

The simulated PSFs in the biplane configuration were generated as follows. (1) Amplitudes (𝑐ଵ, 𝑐ଶ, ⋯ , 𝑐ே) 

was set to obtain a pupil function 𝑃൫𝑘௫, 𝑘௬൯. (2) Pairs of normalized PSFs 𝜇ሺ𝑥, 𝑦, 𝑧ሻ and 𝜇ሺ𝑥, 𝑦, 𝑧  𝛿ሻ 

were generated for two planes on basis of 𝑃൫𝑘௫, 𝑘௬൯, where 𝛿 is the biplane distance. Here we assume the 

two planes share the same pupil function. (3) 𝜇 was multiplied with total photon count 𝐼 and added with a 

background count 𝑏𝑔 to obtain ideal PSFs 𝜇 ൌ 𝐼𝜇  𝑏𝑔. (4) 𝜇 was corrupted with Poisson noise.  

For simulations in biplane setup, the biplane distance 𝛿 was set to 580 nm. The simulation parameters 

including the emission wavelength, the numerical aperture of the objective lens, the effective pixel size on 

the detection plane, and the refractive indices of the objective immersion and imaging media were 

consistent with the experimental conditions.  
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For simulations in Fig. 2a–d and Supplementary Video 1 (randomly aberrated PSFs), the amplitudes of 

21 Zernike modes were randomly sampled from –1 to +1 (unit, λ/2π) in each trial (30 trials in total). 2000 

PSFs were generated with a sub-region size of 40 × 40 pixels, whose axial positions were randomly sampled 

from –800 to +800 nm and lateral positions from –3 to +3 pixels to the center of the sub-region. The total 

photon count per emission event was sampled from a Gaussian distribution with a mean of 2000 and a 

standard deviation of 500, and the background count per pixel was uniformly sampled from 10 to 20.  

For simulations in Extended Data Fig. 2a,b (PSFs at different imaging depths), the amplitudes of Zernike 

modes were set according to our previously estimated optical aberrations (consisting of vertical astigmatism, 

diagonal astigmatism, horizontal coma, vertical coma, and primary and secondary spherical aberrations) at 

various imaging depths1 (0, 6.7, 14.35, 27.55, and 45.4 μm). The axial positions of PSFs were randomly 

sampled from –800 to +800 nm, but with a defocus offset at a certain depth (Extended Data Fig. 2b). The 

number of PSFs, sub-region size, lateral range to the center, total photon count, and background count were 

the same with those in Fig. 2a–d.  

For simulations in Extended Data Fig. 2c (different signal to background ratio (SBR) conditions), the 

amplitudes of 21 Zernike modes were randomly sampled from –1 to +1 (unit, λ/2π) in each trial (11 trials 

in total). The pairs of the total photon count per emission event and background count per pixel were set to 

(5000, 5), (1000, 5), (5000, 20), (1000, 20), (5000, 100), and (1000, 100), and the number of PSFs ranged 

from 100 to 2900 with an increment of 200. The sub-region size, axial range, and lateral range to the center 

were the same with those in Fig. 2a–d.  

For simulations in Extended Data Fig. 2e,f (channel-specific PSFs), PSFs with vertical astigmatism 

aberration at an amplitude of 2 (unit, λ/2π) were generated at axial positions from –500 to +500 nm, with a 

step size of 100 nm, and 1000 PSFs were generated for each z position. The total photon count per emission 

event was set to 2000, and the background count per pixel was set to 30. Plane 1 and plane 2 were related 

with an affine transformation including a rotation of 30 degrees. Then, besides Poisson noise, pixel-

dependent Gaussian noise was added to each pixel of the simulated datasets (the variance distribution was 

shown in the inset of Extended Data Fig. 2e).  

For simulations in Supplementary Fig. 1 (double-line structures at different depths), the amplitudes of 

Zernike modes were set according to our previously estimated optical aberrations at various imaging depths1. 

The double lines were separated by 50 nm. 20,000 PSFs from molecules within the simulated structure 

were generated randomly from –200 to +200 nm in both x and z dimensions. The total photon count per 

emission event was set to 4000 and the background count per pixel was set to 10.  
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For simulations in Supplementary Fig. 12c–e (influence of biplane distance bias), the amplitudes of 21 

Zernike modes were randomly sampled from –1 to +1 (unit, λ/2π) in each trial (30 trials in total). For pupil 

estimation, the simulated single molecules were randomly distributed from –800 to +800 nm in the axial 

direction. The total photon count per emission event was sampled from a Gaussian distribution with a mean 

of 2000 and a standard deviation of 500, and the background count per pixel was uniformly sampled from 

10 to 20. For localization, the simulated single molecules were axially distributed from –500 to +500 nm 

with a step size of 100 nm (1000 single molecules per step). The total photon count per emission event was 

set to 4000, and the background count per pixel was set to 10. 

For simulations in astigmatism-based setup (Supplementary Fig. 6, Supplementary Video 2), the 

amplitude of vertical astigmatism was set to +1.5 (unit, λ/2π) as prior knowledge, and the amplitudes of the 

rest 20 Zernike modes were randomly sampled from –1 to +1 (unit, λ/2π) in each trial (30 trials in total). 

2000 PSFs with a sub-region size of 40 × 40 pixels were randomly sampled with axial positions from –800 

to +800 nm and lateral positions from –3 to +3 pixels to the center. The total photon count per emission 

event was sampled from a Gaussian distribution with a mean of 2000 and a standard deviation of 500, and 

the background count per pixel was uniformly sampled from 10 to 20. 

 

2.6.  INSPR framework 

INSPR constructs an in situ 3D PSF response directly from single molecules located in the cellular volume. 

The key of constructing the 3D PSF is to find the relationship between detected single molecules and their 

axial positions. Drawing inspiration from k-means algorithm22, we assigned 𝑛 detected single molecules 

(i.e. PSF library 𝑋 ൌ ሼPSFଵ, PSFଶ, ⋯ , PSFሽ ) into 𝑘  reference z-stack PSFs (i.e. templates 𝑇 ൌ

ሼPSFଵ
ᇱ , PSFଶ

ᇱ , ⋯ , PSF
ᇱ ሽ, 𝑘 ≪ 𝑛) by calculating 

arg max
ௌ

  Sim൫PSF, PSF
ᇱ൯

∈ௌ



ୀଵ

, (13) 

where Sim is a function to measure the similarity between detected single molecule PSF and template PSF
ᇱ, 

and 𝑆 is a set of PSFs that are assigned into the 𝑖th template group. Our goal is to construct 𝑘 group sets 𝑆 ൌ

ሼ𝑆ଵ, 𝑆ଶ, ⋯ , 𝑆ሽ so that the PSFs within each group are similar to each other, while the averaged PSF of each 

group is dissimilar to that of other groups.  

To ensure this PSF assignment is unique, we used the biplane configuration to detect 𝑛 pairs of PSFs from 

two axially separated detection planes 𝑋 ൌ ൛൫PSFଵ,ଵ, PSFଵ,ଶ൯, ൫PSFଶ,ଵ, PSFଶ,ଶ൯, ⋯ , ൫PSF,ଵ, PSF,ଶ൯ൟ . 
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INSPR started with a constant pupil and generated 𝑘  pairs of templates 𝑇 ൌ

൛൫PSFଵ,ଵ
ᇱ , PSFଵ,ଶ

ᇱ ൯, ൫PSFଶ,ଵ
ᇱ , PSFଶ,ଶ

ᇱ ൯, ⋯ , ൫PSF,ଵ
ᇱ , PSF,ଶ

ᇱ ൯ൟ according to ‘PSF generation’ section. We also 

demonstrated it in astigmatism-based setup with prior knowledge. All detected PSFs in the library were 

compared with these templates and then assigned into the most similar template group (assignment step in 

Fig. 1). The process then updated the pupil by using aligned and averaged PSFs from the axially assigned 

group (update step in Fig. 1), and the updated pupil was used to generate new templates. This process 

usually converged in 6–10 iterations (convergence criteria: the phase difference (measured by RMSE) 

between two adjacent iterations is smaller than 20 mλ). 

INSPR includes three key components: PSF library construction, PSF library assignment, and 3D model 

estimation (Extended Data Fig. 1a), which are explained as follows. 

PSF library construction. For biplane setup, the PSF library was constructed from the single-molecule 

dataset, including pairs of emission patterns at random depths in a certain axial range. The raw datasets 

from two planes were first aligned to the same regions of interest (biplane registration), and then cropped 

into individual sub-regions containing single emitters (segmentation). For astigmatism-based setup, the PSF 

library was directly segmented from the raw dataset. This process includes the following two steps. 

1. Biplane registration. For biplane setup, images in plane 1 were treated as reference, and images in plane 

2 were aligned to plane 1 using affine transformation (including translation, scale, shear, and rotation)23. 

Transformation between two planes can be obtained either by imaging 10–15 fluorescent beads on the 

coverslip with an axial range from –1 to +1 μm and a step size of 100 nm (50 frames in each step), or 

by collecting a single-molecule blinking dataset (1000 or 2000 frames). The image sequences of beads 

or blinking datasets in two planes were individually projected into the lateral plane by maximum-

intensity projection. Then we calculated the affine matrix based on these projection images in two 

planes (using ‘imregtform’ function in MATLAB), and registered the images from plane 2 to plane 1 

according to the affine matrix (using ‘imwarp’ function in MATLAB). For astigmatism-based setup, 

this step was ignored.  

2. Segmentation. For biplane setup, after summing the images from registered planes, sub-regions with 

single molecules were cropped using a segmentation algorithm18, where two uniform filters with 

different kernel sizes were used to reduce noise, and a maximum filter was used to find local maximum 

intensities. The positions of these maximum intensities were localized at the centers of candidate sub-

regions. We utilized two intensity thresholds (initial intensity threshold 𝐼୧୬୧୲  and segmentation 

threshold 𝐼ୱୣ ) and a distance threshold 𝑑୲୦୰ୣୱ୦  to make sure that each selected sub-region only 

contained one molecule with enough brightness. First, the candidate sub-regions were selected if their 
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maximum intensities were higher than 𝐼୧୬୧୲. Second, the overlapped molecules were rejected if the 

centers of two sub-regions were closer than 𝑑୲୦୰ୣୱ୦. Third, the maximum intensities of the rest sub-

regions were filtered out if they were below 𝐼ୱୣ . For in situ model estimation in Fig. 2e,f, 

Supplementary Table 2, and Supplementary Video 3 (distorted wavefront control), we set the sub-

region size to 40 × 40 pixels, 𝑑୲୦୰ୣୱ୦ to 28, 𝐼୧୬୧୲ to 30, and 𝐼ୱୣ  ranging from 35 to 90 in order to get 

~5000 single molecules. For in situ model estimation in Figs. 3f, 4–6, Extended Data Fig. 9, and 

Supplementary Figs. 9, 11, we set the sub-region size to 32 × 32 pixels, 𝑑୲୦୰ୣୱ୦ to 26, 𝐼୧୬୧୲ to 25, and 

𝐼ୱୣ to 40. For 3D single-molecule localization (Figs. 3f, 4–6, Extended Data Fig. 9, Supplementary 

Figs. 9, 11), we set the sub-region size to 16 × 16 pixels, 𝑑୲୦୰ୣୱ୦ to 10, 𝐼୧୬୧୲ to 25, and 𝐼ୱୣ  to 40. For 

datasets acquired in the astigmatism-based setup (Extended Data Figs. 4, 5), single molecules were 

directly cropped from the raw dataset. The sub-regions of single molecules in adjacent optical sections 

were merged to increase the axial range. We set the sub-region size to 32 × 32 pixels, 𝑑୲୦୰ୣୱ୦ to 26, 

𝐼୧୬୧୲ to 25, and 𝐼ୱୣ  to 40 for in situ model estimation, and the sub-region size to 16 × 16 pixels, 𝑑୲୦୰ୣୱ୦ 

to 10, 𝐼୧୬୧୲ to 25, and 𝐼ୱୣ  to 40 for 3D single-molecule localization. 

In single-molecule localization techniques, improving the quality of the detected PSFs will improve the 

accuracy of in situ model estimation and 3D localization. This can be realized with combination of adaptive 

optics1,24–26, tissue clearing27 and expansion methods28,29, and light-sheet illumination approaches30–32.  

PSF library assignment. The detected PSFs in the library were assigned to temporary axial positions 

following three steps. First, the reference z-stack PSFs in one or two planes were generated from the 

initial/estimated pupil function. Second, the detected PSFs were classified into different groups based on 

their similarities with the reference PSFs. Third, 2D alignment was carried out by calculating the shift 

distance between detected PSFs and the most similar reference PSFs. The details are as follows. 

1. Reference z-stack PSF (template) generation. Templates were generated from the initial/estimated pupil 

function, which was a constant pupil in the first iteration, and iteratively optimized in assignment and 

update steps. For biplane setup, INSPR generated 𝑘 templates in each plane with an axial range from –

1.4 to +1.4 μm (𝑇 ൌ ൛൫PSFଵ,ଵ
ᇱ , PSFଵ,ଶ

ᇱ ൯, ൫PSFଶ,ଵ
ᇱ , PSFଶ,ଶ

ᇱ ൯, ⋯ , ൫PSF,ଵ
ᇱ , PSF,ଶ

ᇱ ൯ൟ), which is sufficient to 

cover all the detected PSFs. The axial step size of the templates 𝑑௧ was set to 𝛿/2 or 𝛿/4, where 𝛿 is 

the biplane distance. The setting of the axial step size made the templates generated from the pupil 

function of each plane overlap around the center of the axial range. For simulations in biplane setup 

(Fig. 2a–d, Extended Data Fig. 2a–c, Supplementary Video 1), we set 𝛿 to 580 nm and 𝑑௧ to 𝛿/4 

(145 nm).  For the datasets in Fig. 2e,f, Supplementary Table 2, and Supplementary Video 3 

(distorted wavefront control), 𝛿 was obtained from measurement as 580 nm, and we set 𝑑௧ to 𝛿/4 (145 
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nm). For the dataset in Fig. 3f (TOM20), 𝛿 was obtained from measurement and rescaling as 286 nm, 

and we set 𝑑௧ to 𝛿/2 (143 nm). For the dataset in Extended Data Fig. 9 (ChR2-EYFP), 𝛿 was obtained 

from measurement and rescaling as 568 nm, and we set 𝑑௧ to 𝛿/4 (142 nm). For other datasets (Figs. 

4–6, Supplementary Figs. 9, 11), 𝛿 was obtained from measurement and rescaling as 558 nm and we 

set 𝑑௧ to 𝛿/4 (139 nm). For simulations and datasets in the astigmatism-based setup (Extended Data 

Figs. 4, 5, Supplementary Fig. 6, Supplementary Video 2), the templates were generated at axial 

positions from –1 to +1 μm, with a step size of 100 nm. We set the amplitude of vertical astigmatism 

to +1.5 (unit, λ/2π) for simulation and +1.2 (unit, λ/2π) for experimental data as initial guess.   

2.  Classification. For biplane setup, each pair of detected single molecules in the PSF library (𝑋 ൌ

൛൫PSFଵ,ଵ, PSFଵ,ଶ൯, ൫PSFଶ,ଵ, PSFଶ,ଶ൯, ⋯ , ൫PSF,ଵ, PSF,ଶ൯ൟ) was assigned to a certain template group 

with the highest similarity. The similarity is defined as 

Sim൫PSF, PSF
ᇱ൯ ൌ

1
2

ൣNCC൫PSF,ଵ, PSF,ଵ
ᇱ ൯  NCC൫PSF,ଶ, PSF,ଶ

ᇱ ൯൧, (14) 

where NCC is the normalized cross correlation between detected PSFs and templates in each plane. 

The value of NCC varies from –1 to +1, where high NCC represents high similarity between detected 

PSFs and templates. Therefore, each detected PSF in the library was classified into a certain template 

group, which formed 𝑘  group sets 𝑆 ൌ ሼ𝑆ଵ, 𝑆ଶ, ⋯ , 𝑆ሽ . We used similarity threshold Sim୫୧୬ and 

number threshold 𝑁 to select high-similarity PSFs in each group, where PSFs with a similarity lower 

than Sim୫୧୬ or groups with fewer than 𝑁 PSFs were rejected. For simulations (Fig. 2a–d, Extended 

Data Fig. 2a–c, Supplementary Fig. 6, Supplementary Videos 1, 2), we set Sim୫୧୬ to 0.5, and 𝑁 

ranging from 5 to 30. For the datasets in Fig. 2e,f, Supplementary Table 2, and Supplementary Video 

3 (distorted wavefront control), we set Sim୫୧୬ to 0.5 or 0.6, and 𝑁 to 15 or 25. For other datasets 

acquired in the biplane setup (Figs. 3f, 4–6, Extended Data Fig. 9, Supplementary Figs. 9, 11), we 

set Sim୫୧୬ to 0.6, and 𝑁 to 30. For the datasets acquired in the astigmatism-based setup (Extended 

Data Figs. 4, 5), each detected single molecule was assigned to a certain template group. We set Sim୫୧୬ 

to 0.6, and 𝑁 to 50. 

3. 2D alignment. For each detected PSF, 2D cross correlation was used to calculate the shift distance with 

its corresponding template. To find the correlation peak from the 2D cross correlation image, Fourier 

interpolation with 10 times up sampling was used to identify the peak with a sub-pixel size of 12 nm. 

Then the detected PSF was aligned to its template according to the shift distance. Here two shift modes 

were used in biplane setup. (1) XY_shift_mode = ‘separate shift’, meaning that the shift distance was 

calculated individually for each plane, and the PSFs were aligned to their corresponding templates 

separately. This mode was used in simulations (Fig. 2a–d, Extended Data Fig. 2a–c, Supplementary 
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Video 1) and distorted wavefront control (Fig. 2e,f, Supplementary Table 2, Supplementary Video 

3). (2) XY_shift_mode = ‘together shift’, meaning that the shift distances were calculated together for 

two planes, and the PSFs of two planes were aligned to the corresponding pair of templates. This mode 

is more robust especially for data with low SBR, so it was used for experimental data. 

In this work, we used biplane configuration and astigmatism configuration with prior knowledge to avoid 

degeneracies (Extended Data Fig. 1d,e). Besides, the framework of INSPR can also be generalized to other 

configurations, such as using a phase mask to generate non-degenerate PSF shapes33,34.  

3D model estimation. The classified PSFs in each group were averaged to improve SBR, and then re-

arranged by their axial positions. The phase retrieval method2,3 was carried out to estimate a new pupil 

function, which described the in situ 3D model and was used to generate reference z-stack PSFs in ‘PSF 

library assignment’ section. The details are as follows. 

1. Group average. Here 𝑘 group sets 𝑆 ൌ ሼ𝑆ଵ, 𝑆ଶ, ⋯ , 𝑆ሽ were formed by PSF library assignment. In each 

group, the assigned PSFs were similar to each other and aligned to the center of the template. In order 

to obtain high-contrast images, these assigned PSFs were first normalized by z-score normalization and 

then averaged together as 

PSF,
୴ୣ ൌ Ave൫൛PSF,: 𝑗 ∈ 𝑆ൟ൯, ሺ𝑚 ൌ 1,2ሻ, (15) 

where Ave is the image averaging operation, PSF,
୴ୣ is the averaged PSF of plane 𝑚 in group 𝑖, and 

PSF, is the normalized PSF of plane 𝑚 in the library. Thus we obtained 2𝑘 average images 𝐴 ൌ

൛൫PSFଵ,ଵ
୴ୣ, PSFଵ,ଶ

୴ୣ൯, ൫PSFଶ,ଵ
୴ୣ, PSFଶ,ଶ

୴ୣ൯, ⋯ , ൫PSF,ଵ
୴ୣ, PSF,ଶ

୴ୣ൯ൟ , and their axial positions 𝑍 ൌ

൛൫𝑍ଵ,ଵ, 𝑍ଵ,ଶ൯, ൫𝑍ଶ,ଵ, 𝑍ଶ,ଶ൯, ⋯ , ൫𝑍,ଵ, 𝑍,ଶ൯ൟ for biplane setup. For astigmatism-based setup, we obtained 

𝑘 average images and their axial positions. 

2. PSF stack re-arrangement. For biplane setup, the 2𝑘 averaged PSFs were re-arranged into an axial 

range from –1.4 to +1.4 μm. The PSFs with the same axial positions in two planes were merged together. 

Thus a 3D PSF stack was formed, which was usually from –1 to +1 μm with a step size of 100–200 nm. 

For astigmatism-based setup, this step was ignored.  

3. Pupil generation. The 3D PSF stack was used to generate the in situ 3D PSF model by phase retrieval 

method2,3, which is based on Gerchberg-Saxon algorithm and outputs a pupil function to generate the 

retrieved PSFs within an axial range of ~2 μm. The phase retrieval process was carried out with a stack 

of averaged PSFs, their corresponding axial positions, and system parameters including the numerical 

aperture of the objective lens, the emission wavelength, the refractive index of the objective immersion 

medium, and the pixel size on the detection plane. Here we used two update modes. (1) Z_shift_mode 
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= ‘shift’. In this mode, phase retrieval was carried out three times iteratively. For each time, phase 

retrieval found x tilt, y tilt, and defocus aberrations from decomposed Zernike modes and compensated 

these aberrations by shifting the lateral and axial positions of averaged PSFs. We used this mode in 

simulations, imaging experiments, and distorted wavefront control for low-order aberrations (from 

vertical astigmatism to secondary diagonal astigmatism except for the spherical aberration). (2) 

Z_shift_mode = ‘no shift’. In this mode the positions were not updated. We used this mode in cases 

where wavefront distortions were significantly large, since the induced phase wrapping could make 

Zernike decomposition unreliable.  

In fact, phase retrieval is not the only way to estimate the 3D model in INSPR. Any model-estimation tools 

developed for single-molecule localization, such as feature-based mapping14,35, interpolation7,36, and deep 

learning37,38, can be utilized to build the 3D model in generalized INSPR. 

 

2.7.  3D single-molecule localization using INSPR model transformation 

INSPR models the 3D PSFs through the pupil function (as described in ‘PSF generation’ section). For the 

biplane configuration, the PSFs in each plane can be described as 

൜
𝜇ଵሺ𝑥, 𝑦, 𝑧ሻ ൌ 𝐼ଵ ∙ 𝜇ሺ𝑥, 𝑦, 𝑧ሻ  𝑏𝑔ଵ

𝜇ଶሺ𝑥, 𝑦, 𝑧ሻ ൌ 𝐼ଶ ∙ 𝜇ሺ𝑥, 𝑦, 𝑧  𝛿ሻ  𝑏𝑔ଶ
,  (16) 

where 𝜇ଵ and 𝜇ଶ represent the PSF models in two planes, 𝜇ሺ𝑥, 𝑦, 𝑧ሻ and 𝜇ሺ𝑥, 𝑦, 𝑧  𝛿ሻ are normalized 

PSFs generated by the pupil function at positions ሺ𝑥, 𝑦, 𝑧ሻ and ሺ𝑥, 𝑦, 𝑧  𝛿ሻ, 𝛿 is the biplane distance, 𝐼ଵ 

and 𝐼ଶ are the total photon counts, and 𝑏𝑔ଵ and 𝑏𝑔ଶ are the background counts. 

The data collected by using the sCMOS camera come with statistical properties including Poisson noise 

and pixel-dependent readout noise18. If we directly transform and interpolate data between two detection 

planes in 3D localization (i.e., treating plane 1 as reference and transforming the data from plane 2 to plane 

1, as described in ‘INSPR framework’ section), the noise distribution will no longer maintain these 

statistical properties, resulting in imaging artifacts and localization imprecisions (Extended Data Fig. 2e,f). 

To solve this problem, we generated a channel-specific PSF model (i.e., transforming the model instead of 

transforming the data) for single-molecule localization.  

First, we carried out segmentation for the raw data in plane 2 as follows. (1) The center position ሺ𝑋ଵ, 𝑌ଵሻ of 

a cropped sub-region in plane 1 was recorded as described in ‘INSPR framework’ section. (2) ሺ𝑋ଵ, 𝑌ଵሻ 

was transformed by affine transformation to find its corresponding position ሺ𝑋ଶ, 𝑌ଶሻ in plane 2. (3) A sub-

region of the raw data in plane 2 was cropped with an integer center ሺ𝑋ଶ୧୬୲, 𝑌ଶ୧୬୲ሻ ൌ 𝑓𝑙𝑜𝑜𝑟ሺ𝑋ଶ, 𝑌ଶሻ, and the 
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non-integer offset was calculated as ሺΔ𝑥, Δ𝑦ሻ  ൌ  ሺ𝑋ଶ, 𝑌ଶሻ – ሺ𝑋ଶ୧୬୲, 𝑌ଶ୧୬୲ሻ . The noise calibration map 

(including offset, variance, and gain for each pixel) of the sCMOS camera for each sub-region was cropped 

in a similar way.  

For one single molecule, the relationship between its positions in plane 1 and plane 2 (Extended Data Fig. 

1b) can be expressed as 

ሺ𝑋ଶint  𝑥ᇱ, 𝑌2int  𝑦ᇱ, 1ሻ ൌ ሺ𝑋ଵ  𝑥, 𝑌ଵ  𝑦, 1ሻ 
𝑎 𝑏 0
𝑐 𝑑 0
𝑒 𝑓 1

൩ , (17) 

where ሺ𝑥, 𝑦ሻ and ሺ𝑥′, 𝑦′ሻ are the positions of the single molecule in the cropped sub-regions of two planes. 


𝑎 𝑏 0
𝑐 𝑑 0
𝑒 𝑓 1

൩ is the matrix of affine transformation23 including six parameters, where ቂ𝑎 𝑏
𝑐 𝑑

ቃ represents scale, 

shear, and rotation operations, and ሺ𝑒, 𝑓ሻ represents the translation operation. Affine transformation is a 

linear transformation and can be written as 

൜
𝑋ଶint  𝑥ᇱ ൌ 𝑎ሺ𝑋ଵ  𝑥ሻ  𝑐ሺ𝑌ଵ  𝑦ሻ  𝑒 ൌ 𝑎𝑋ଵ  𝑐𝑌ଵ  𝑒  𝑎𝑥  𝑐𝑦
𝑌ଶint  𝑦ᇱ ൌ 𝑏ሺ𝑋ଵ  𝑥ሻ  𝑑ሺ𝑌ଵ  𝑦ሻ  𝑓 ൌ 𝑏𝑋ଵ  𝑑𝑌ଵ  𝑓  𝑏𝑥  𝑑𝑦

 . (18) 

Since the center position of the cropped sub-region was transformed from plane 1 to plane 2 by the same 

affine matrix 

൜
𝑋ଶ ൌ 𝑎𝑋ଵ  𝑐𝑌ଵ  𝑒 ൌ 𝑋ଶint  ∆𝑥
𝑌ଶ ൌ 𝑏𝑋ଵ  𝑑𝑌ଵ  𝑓 ൌ 𝑋ଶint  ∆𝑦 , (19) 

by combining Eqs. (18) and (19), the relationship between ሺ𝑥, 𝑦ሻ and ሺ𝑥′, 𝑦′ሻ, the positions in cropped sub-

regions, can be described as 

൜
𝑥ᇱ ൌ 𝑎𝑥  𝑐𝑦  ∆𝑥
𝑦ᇱ ൌ 𝑏𝑥  𝑑𝑦  ∆𝑦

, (20) 

showing that the raw single-molecule data and the cropped sub-region share the same scale, shear, and 

rotation parameters ቂ𝑎 𝑏
𝑐 𝑑

ቃ between two planes, except for the translation parameters ሺ𝑒, 𝑓ሻ. 

Second, to generate the channel-specific PSF model in plane 2, the model should satisfy two conditions. 

First, it shares the same shape information (scale, shear, and rotation) with the cropped sub-regions. Second, 

it has the same center position before and after transformation. Therefore, the affine transformation applied 

to the model Affine ൌ 
𝑎 𝑏 0
𝑐 𝑑 0
𝑒ᇱ 𝑓ᇱ 1

൩ should satisfy 
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ሺ𝑋, 𝑌, 1ሻ ൌ ሺ𝑋, 𝑌, 1ሻ 
𝑎 𝑏 0
𝑐 𝑑 0
𝑒ᇱ 𝑓ᇱ 1

൩ , (21) 

where ሺ𝑋, 𝑌ሻ is the center position of the cropped sub-region (when performing affine transformation, the 

upper left corner of the image is defined as the origin, and 𝑋 is equal to half of the sub-region size). The 

translation parameters ሺ𝑒′, 𝑓′ሻ in Affine can be calculated as ൜
𝑒ᇱ ൌ ሺ1 െ 𝑎ሻ𝑋 െ 𝑐𝑌

𝑓ᇱ ൌ ሺ1 െ 𝑑ሻ𝑌 െ 𝑏𝑋
. Thus, the channel-

specific PSF model in plane 2 can be described as 

𝜇ଶ
ᇱ ሺ𝑥ᇱ, 𝑦ᇱ, 𝑧ሻ ൌ TransሼAffineሾ𝜇ଶሺ0,0, 𝑧ሻሿ, ሺ𝑥ᇱ, 𝑦ᇱሻሽ , (22) 

where Trans is the translation operation and 𝜇ଶሺ0,0, 𝑧ሻ represents the PSF model of plane 2 at position 

ሺ0,0, 𝑧ሻ. The model 𝜇ଶሺ0,0, 𝑧ሻ was first transformed to the channel-specific model 𝜇ଶ
ᇱሺ0,0, 𝑧ሻ by affine 

transformation Affine, and then translated to the position ሺ𝑥ᇱ, 𝑦ᇱሻ given by Eq. (20). 

Third, we directly incorporated the channel-specific PSF model inside the maximum likelihood estimator 

(MLE)10 to estimate seven parameters ሺ𝑥, 𝑦, 𝑧, 𝐼ଵ, 𝐼ଶ, 𝑏𝑔ଵ, 𝑏𝑔ଶሻ by considering the Poisson noise and pixel-

dependent sCMOS noise as 

𝐿ሺ𝜃|𝐷ሻ ൌ ෑ
ሺ𝜇ଵ  𝛾ଵሻሺభାఊభሻ𝑒ିሺఓభାఊభሻ

Γ൫𝐷ଵ  𝛾ଵ  1൯


ෑ
ሺ𝜇ଶ

ᇱ  𝛾ଶሻሺమାఊమሻ𝑒ିሺఓమ
ᇲ ାఊమሻ

Γ൫𝐷ଶ  𝛾ଶ  1൯
,



 

𝜃 ∈ ሺ𝑥, 𝑦, 𝑧, 𝐼ଵ, 𝐼ଶ, 𝑏𝑔ଵ, 𝑏𝑔ଶሻ, 

(23) 

where 𝐷 is the cropped sub-region of two planes, 𝑞 is the pixel index, 𝜇ଵ and 𝜇ଶ′ represent the PSF models 

in planes 1 and 2, respectively. 𝛾 ൌ
௩


మ , where 𝑣𝑎𝑟 and 𝑔 are the variance and gain for pixel 𝑞 

in plane 𝑚 (𝑚 ൌ 1,2). 𝜃 denotes the fitting parameters including the same position ሺ𝑥, 𝑦, 𝑧ሻ, and different 

total photon counts ሺ𝐼ଵ, 𝐼ଶሻ and background counts ሺ𝑏𝑔ଵ, 𝑏𝑔ଶሻ for two planes. A modified Levenberg-

Marquadt method39 was used to optimize 𝜃 by minimizing the negative log-likelihood function 

െ lnሺ𝐿ሻ ൌ  𝜇ଵ െ ሺ𝐷ଵ  𝛾ଵሻlnሺ𝜇ଵ  𝛾ଵሻ 


 𝜇ଶ
ᇱ െ ሺ𝐷ଶ  𝛾ଶሻlnሺ𝜇ଶ

ᇱ  𝛾ଶሻ


. (24) 

The first and second derivatives are 

𝑓 ൌ െ
∂lnሺ𝐿ሻ

𝜕𝜃
ൌ  ቆ1 െ

𝐷ଵ  𝛾ଵ

𝜇ଵ  𝛾ଵ
ቇ

∂𝜇ଵ

𝜕𝜃




 ቆ1 െ
𝐷ଶ  𝛾ଶ

𝜇ଶ
ᇱ  𝛾ଶ

ቇ
∂𝜇ଶ

ᇱ

𝜕𝜃


 , (25) 
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 𝑓ᇱ ൌ
𝜕𝑓
𝜕𝜃

ൌ 
𝐷ଵ  𝛾ଵ

൫𝜇ଵ  𝛾ଵ൯
ଶ ቆ

∂𝜇ଵ

𝜕𝜃
ቇ

ଶ




ቆ1 െ
𝐷ଵ  𝛾ଵ

𝜇ଵ  𝛾ଵ
ቇ

∂ଶ𝜇ଵ

𝜕𝜃ଶ  

                    
𝐷ଶ  𝛾ଶ

൫𝜇ଶ
ᇱ  𝛾ଶ൯

ଶ ቆ
∂𝜇ଶ

ᇱ

𝜕𝜃
ቇ

ଶ




ቆ1 െ
𝐷ଶ  𝛾ଶ

𝜇ଶ
ᇱ  𝛾ଶ

ቇ
∂ଶ𝜇ଶ

ᇱ

𝜕𝜃ଶ  , 

(26) 

where the second derivatives  
பమఓభ

డఏమ  and 
பమఓమ

ᇲ

డఏమ  were set to 0, and the fitting parameters were updated from 

𝜃ାଵ ൌ 𝜃 െ
𝑓

𝑓ᇱሺ1  𝛽ሻ
, (27) 

where 𝛽 is a damping factor to adjust the convergence speed, and was set to 0 here.  

For the astigmatism-based setup, we directly incorporated the PSF model in one plane inside the MLE to 

estimate five parameters ሺ𝑥, 𝑦, 𝑧, 𝐼ଵ, 𝑏𝑔ଵሻ. 

The localization speed in INSPR mainly depends on the speed of fitting the parameters in the 3D PSF model 

generated by the Fourier transform of the retrieved pupil function. To speed up this process, we used the 

cubic interpolation methods40 to pre-generate 3D PSF models along the axial direction for each voxel of 

0.25 pixel × 0.25 pixel × 4 nm in the whole range of 25 pixels × 25 pixels × 2.6 μm. The GPU 

implementation of cubic interpolation achieves a localization speed of 240 PSFs per second, ~400 times 

faster than the CPU implementation using MATLAB. The code was tested on a computer with an Intel 

Core i7-8700K processor at 3.70 GHz with 32 GB memory and an NVIDIA GeForce GTX 1070 graphics 

card with 8.0 GB memory.  

 

2.8.  Calculation of Cramér-Rao lower bound 

To quantify the Fisher information content of detected PSFs in INSPR, the CRLB10 for estimating 

localization precision in an unbiased estimator was calculated as 

𝑣𝑎𝑟ሺθ୧ሻ  ሾ𝐹ሺθሻିଵሿ୧୧ , (28) 

where 𝑣𝑎𝑟ሺ𝜃ሻ is the estimation variance of an estimator, 𝐹ሺ𝜃ሻ is the Fisher information matrix, 𝜃 is the 

vector of estimation parameters, and 𝑖 denotes the index of each parameter.  

For biplane setup, by incorporating the noise characteristic (Poisson noise and pixel-independent readout 

noise) of the sCMOS camera and the channel-specific PSF model, the relevant Fisher information in each 

element can be calculated as 
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𝐹ሺ𝜃ሻ ൌ 
1

𝜇ଵ  𝛾ଵ

𝜕𝜇ଵ

𝜕𝜃

𝜕𝜇ଵ

𝜕𝜃





1

𝜇ଶ
ᇱ  𝛾ଶ

𝜕𝜇ଶ
ᇱ

𝜕𝜃

𝜕𝜇ଶ
ᇱ

𝜕𝜃
,



 

𝜃 ∈ ሺ𝑥, 𝑦, 𝑧, 𝐼ଵ, 𝐼ଶ, 𝑏𝑔ଵ, 𝑏𝑔ଶሻ, 

(29) 

where 𝜇ଵ and 𝜇ଶ
ᇱ  represent the PSF models in planes 1 and 2, respectively; 𝛾 is the noise characteristic of 

the sCMOS camera, and 𝑞 is the pixel index. For astigmatism-based setup, the Fisher information in each 

element was calculated with parameters 𝜃 ∈ ሺ𝑥, 𝑦, 𝑧, 𝐼ଵ, 𝑏𝑔ଵሻ. 

Furthermore, the Fisher information in the x and y dimensions in biplane setup was changed by considering 

the position relationship in the channel-specific PSF model ൜
𝑥ᇱ ൌ 𝑎𝑥  𝑐𝑦  ∆𝑥
𝑦ᇱ ൌ 𝑏𝑥  𝑑𝑦  ∆𝑦

 (as described by Eq. (20) 

in ‘3D single-molecule localization’ section), where ሺ𝑥, 𝑦ሻ and ሺ𝑥′, 𝑦′ሻ are the positions of the PSF model 

of two planes, ሺΔ𝑥, Δ𝑦ሻ is the non-integer offset in plane 2, and ቂ𝑎 𝑏
𝑐 𝑑

ቃ represents scale, shear, and rotation 

operations in affine transformation. 

By calculating the derivative of the x dimension in plane 2 

𝜕𝜇ଶ
ᇱ

𝜕𝑥
ൌ

𝜕𝜇ଶ
ᇱ

𝜕𝑥ᇱ

𝜕𝑥ᇱ

𝜕𝑥


𝜕𝜇ଶ
ᇱ

𝜕𝑦ᇱ

𝜕𝑦ᇱ

𝜕𝑥
ൌ 𝑎

𝜕𝜇ଶ
ᇱ

𝜕𝑥ᇱ  𝑏
𝜕𝜇ଶ

ᇱ

𝜕𝑦ᇱ , (30) 

the Fisher information in the x dimension can be written as 

 𝐹௫௫ ൌ 
1

𝜇ଵ  𝛾ଵ
ቆ

𝜕𝜇ଵ

𝜕𝑥
ቇ

ଶ





1

𝜇ଶ
ᇱ  𝛾ଶ

ቆ
𝜕𝜇ଶ

ᇱ

𝜕𝑥
ቇ

ଶ

        


 

        ൌ 
1

𝜇ଵ  𝛾ଵ
ቆ

𝜕𝜇ଵ

𝜕𝑥
ቇ

ଶ





1

𝜇ଶ
ᇱ  𝛾ଶ

ቆ
𝜕𝜇ଶ

ᇱ

𝜕𝑥ᇱ

𝜕𝑥ᇱ

𝜕𝑥


𝜕𝜇ଶ
ᇱ

𝜕𝑦ᇱ

𝜕𝑦ᇱ

𝜕𝑥
ቇ

ଶ



 

ൌ 
1

𝜇ଵ  𝛾ଵ
ቆ

𝜕𝜇ଵ

𝜕𝑥
ቇ

ଶ





1

𝜇ଶ
ᇱ  𝛾ଶ

ቆ𝑎
𝜕𝜇ଶ

ᇱ

𝜕𝑥ᇱ  𝑏
𝜕𝜇ଶ

ᇱ

𝜕𝑦ᇱ ቇ
ଶ



. 

(31) 

Similarly, the Fisher information in the y dimension can be written as 

𝐹௬௬ ൌ 
1

𝜇ଵ  𝛾ଵ
ቆ

𝜕𝜇ଵ

𝜕𝑦
ቇ

ଶ





1

𝜇ଶ
ᇱ  𝛾ଶ

ቆ𝑐
𝜕𝜇ଶ

ᇱ

𝜕𝑥ᇱ  𝑑
𝜕𝜇ଶ

ᇱ

𝜕𝑦ᇱ ቇ
ଶ



 . (32) 
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2.9.  Rejection methods 

CRLB is one criterion to measure the localization uncertainty with retrieved 3D PSF model given by the 

position ሺ𝑥, 𝑦, 𝑧ሻ , photon count 𝐼 , and background count 𝑏𝑔 . Here we focused on the localization 

uncertainty in the z dimension (ඥCRLB ). In order to improve the quality of reconstructed images, 

localizations with ඥCRLB larger than a certain threshold were rejected. We set this threshold to 30 nm for 

the dataset in Fig. 3f (TOM20), 35 nm for the datasets in Extended Data Figs. 4, 5 (TOM20), 40 nm for 

the datasets in Fig. 6a and Supplementary Fig. 9 (ChR2-EYFP) and the dataset in Supplementary Fig. 

11a (α-tubulin), 45 nm for the datasets in Fig. 5a (low-density amyloid β plaque), 50 nm for the datasets in 

Fig. 4 (Nup98), Fig. 5k (high-density amyloid β plaque), Extended Data Fig. 9 (ChR2-EYFP), and 

Supplementary Fig. 11e (TOM20 and α-tubulin), and 70 nm for the dataset in Fig. 6h (elastic fibers). 

Log-likelihood ratio (LLR) is a goodness of fitting which reflects the similarity between each detected PSF 

and its corresponding PSF model after fitting, and can be expressed as 

LLR ൌ െ2 ln ቆ
𝐿ሺ𝜇|𝐷ሻ

𝐿ሺ𝐷|𝐷ሻ
ቇ                                        

     ൌ  2ൣ𝜇ଵ െ 𝐷ଵ െ ሺ𝐷ଵ  𝛾ଵሻln ሺ𝜇ଵ  𝛾ଵሻ  ሺ𝐷ଵ  𝛾ଵሻln ሺ𝐷ଵ  𝛾ଵሻ൧


 

          2ൣ𝜇ଶ
ᇱ െ 𝐷ଶ െ ሺ𝐷ଶ  𝛾ଶሻln ሺ𝜇ଶ

ᇱ  𝛾ଶሻ  ሺ𝐷ଶ  𝛾ଶሻln ሺ𝐷ଶ  𝛾ଶሻ൧


, 

(33) 

where 𝐷 is the cropped sub-region of single molecule, 𝜇 is the PSF model, 𝛾 is the noise characteristic of 

the sCMOS camera, and 𝑞 is the pixel index. Lower LLR means higher similarity between each detected 

PSF and its corresponding PSF model. Here we set LLR to 1000 for each 16 × 16 pixels in the single-

molecule dataset in biplane setup, and LLR to 600 in astigmatism-based setup. LLR shows high similarity 

with the detected emission patterns in camera frames in contrast to the in vitro model (Supplementary Fig. 

13). 

Besides, we rejected single molecules more than 800 nm out of focus in biplane setup, and 500 nm out of 

focus in astigmatism-based setup. Single molecules with total photon count lower than 1000 were rejected 

for both biplane and astigmatism-based setups in our reconstructions. 
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2.10.  Drift correction, optical section alignment, and Exchange-PAINT alignment 

To image thick samples, optical sections were recorded as described in ‘Data acquisition’ section. The 

drift correction and optical section alignment were carried out according to a previously described method1. 

In each optical section, drift was calibrated by calculating the correlation between each 3D volume 

consisting of localized single molecules from 1000 frames using a redundancy-based correction 

method16,41,42. These calibrated 3D volumes formed an ~1.6-μm-thick optical section. Whole cells or tissue 

specimens were scanned axially by translating the objective lens with a step size of 250 nm for astigmatism-

based setup and 400 nm for biplane setup, which ensured enough overlapped regions between adjacent 

optical sections. We performed the 3D-correlation-based method16 to align two adjacent optical sections, 

and finally reconstructed a super-resolution 3D volume. 

Exchange-PAINT imaging was performed sequentially, first mitochondria and then microtubules. Before 

fluorescence imaging, we recorded a series of bright-field images of the sample over an axial range from –

1 to +1 μm with a step size of 100 nm as reference images for both focus stabilization (as described in ‘Data 

acquisition’ section) and Exchange-PAINT alignment. After calibrating the drift in each imaging process, 

we used these reference images to align the calibrated results from mitochondria to microtubules by 

performing the 3D-correlation-based method16.  

 

2.11.  Supercritical angle fluorescence and polarization effects on INSPR 

When using a high-NA-oil-immersion objective (e.g. when NA  1.4) to image into a watery environment, 

supercritical angle fluorescence (SAF) effect43,44 is enabled close to the coverslip-water interface, resulting 

that the evanescent wave that originates from fluorophores can penetrate the interface and become a 

propagating wave at an angle larger than the critical angle. This SAF effect could also be retrieved by using 

phase retrieval3. However, to retrieve this SAF pupil, fluorescent beads need to be attached on the coverslips 

and moved together with the coverslip at different axial positions for phase retrieval. When imaging 

fluorescent-labeled cellular structures, single molecules with different axial positions locate at different 

depths from the coverslip, and therefore, the strength of SAF or the SAF pupil will differ drastically (due 

to the sensitivity of the SAF effect with the distance) for different molecules. In this case, using a single 

pupil within the near interface region may not be suitable. To resolve this, the algorithm needs to retrieve 

the varying SAF pupils at different depths from the coverslip to reconstruct the 3D SAF-PSF.  

In this work, we assume that the fluorophore is freely rotating with a frequency much higher than the camera 

frame rate, and therefore, the optical transfer function (OTF) of the detected fluorophore is radial-
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symmetrically modified. In 3D PSF model estimation using INSPR, we account for this effect through a 

process named OTF rescaling2,3.  

In cases where single molecules are considered dipoles with fixed orientations, it has been shown that using 

a more sophisticated PSF model allows to take these orientations into account45,46, or adding an azimuthal 

polarization filter located at the back focal plane can remove localization bias47. The possibility of co-

estimating both location and orientation of the single molecules is of great interest and can be quite 

complicated in presence of aberration due to the high dimensionality of the PSF model.  

 

3. Quantification analysis 

3.1.  Simulation analysis 

We tested the performance of INSPR in different simulation conditions by generating PSFs with random 

aberrations in biplane setup (Fig. 2a–d, Supplementary Video 1), PSFs at different imaging depths above 

the coverslip surface (Extended Data Fig. 2a,b), PSFs with different SBR conditions (Extended Data Fig. 

2c), channel-specific PSFs (Extended Data Fig. 2e,f), impact of biplane distance bias (Supplementary 

Fig. 12c–e), PSFs with random aberrations in astigmatism-based setup (Supplementary Fig. 6, 

Supplementary Video 2), and 3D training datasets of microtubules (MT0.N1.LD) from the SMLM 

challenge48 (Fig. 3a–e, Extended Data Fig. 3). 

For simulations in Fig. 2a–d and Supplementary Video 1 (random aberrated PSFs in biplane setup), we 

decomposed the INSPR retrieved pupil into 21 Zernike modes (Wyant order, from vertical astigmatism to 

tertiary spherical aberration) and recorded their amplitudes. For each trial, the phase and Zernike amplitude 

errors were defined as the RMSE between the INSPR retrieved pupil and the ground truth pupil. We then 

calculated their mean and standard deviation in the total 30 trials. 

For simulations in Extended Data Fig. 2a,b (PSFs at different imaging depths above the coverslip surface), 

the defocus offset (i.e., the axial shift from the actual focal plane) was estimated as follows. First, we 

retrieved the 3D PSF in a range from –1.5 to +1.5 µm with a step size of 20 nm. Then, we plotted the PSF 

intensity curve at the center of the lateral position along the axial direction and recorded the axial position 

of the maximum intensity. After that, we calculated the axial offset between the plane with the maximum 

intensity and the actual focal plane. In the actual imaging process, we only collected single molecules at 

the axial plane with the maximum intensity and treated this plane as the focal plane. To simulate this process, 

we generated 2000 PSFs located randomly with an axial range from –800 to +800 nm but with a certain 

defocus offset at each imaging depth, and retrieved in situ pupils using INSPR. For each imaging depth, we 
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first generated the 3D PSF by our previously estimated optical aberrations1 with an axial range from –800 

to +800 nm and a step size of 100 nm as ground truth. Then we calculated the 3D normalized cross 

correlations (NCCs) between the ground truth PSFs and the PSFs retrieved using the Gaussian model, 

theoretical index mismatch model2,3, and INSPR for different axial offsets. Finally, we recorded the 

maximum NCC values and their corresponding 3D PSF at different imaging depths. 

For simulation in Extended Data Fig. 2c (different SBR conditions), the amplitude error of Zernike modes 

was calculated at different photon and background conditions (11 trials in each condition). In each condition, 

we calculated the mean and standard deviation of the amplitude error in the total 11 trials for different 

numbers of single molecules. After calculating all conditions, we obtained the convergence curves. 

For simulations in Extended Data Fig. 2e,f (channel-specific PSFs), the √CRLB  in the x, y, and z 

dimensions was calculated as described in ‘Calculation of Cramér-Rao lower bound’ section. In the 

measurement system, the achievable estimation precision is limited by CRLB for an unbiased estimator. 

The precision in each dimension at a certain position (ranging from –500 to +500 nm with a step size of 

100 nm) was calculated from the standard deviation of the estimated positions of 1000 PSFs. The bias in 

each dimension was calculated as the difference between the averaged position of 1000 PSFs and the ground 

truth position. 

For simulations in Supplementary Fig. 12c–e (impact of a biased biplane distance input), we first used 

random wavefront shapes (30 trials in total) to generate PSFs located randomly in an axial range of ±800 

nm with a biplane distance of 580 nm (2000 PSFs per trial). Subsequently, we used INSPR to retrieve the 

corresponding pupils from the generated PSFs with biased biplane distance inputs (from –20% to 20%), 

and compared their decomposed Zernike amplitudes with the ground truth amplitudes (Supplementary 

Fig. 12d). Then, for each trial (a single wavefront), we used the retrieved pupils to localize the PSFs 

generated from the ground truth wavefront at fixed axial positions from –500 to +500 nm with a step size 

of 100 nm (1000 single molecules per step). For each axial step, we calculated the mean axial position of 

1000 single molecules to obtain the localization bias for a single trial. Subsequently, the mean and standard 

deviation of the resulting localization biases in the total 30 trials were reported (Supplementary Fig. 12e). 

For simulations in Supplementary Fig. 6 and Supplementary Video 2 (randomly aberrated PSFs in 

astigmatism-based setup), the INSPR retrieved pupil was decomposed into 21 Zernike modes (Wyant order, 

from vertical astigmatism to tertiary spherical aberration) and the amplitudes in all modes were recorded. 

Then we calculated the mean and standard deviation of the phase and Zernike amplitude errors in the total 

30 trials. 
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For 3D training datasets of microtubules from the SMLM challenge48 (Fig. 3a–e, Extended Data Fig. 3), 

the system parameters including the numerical aperture of the objective lens, the emission wavelength, the 

refractive indices of the objective immersion and imaging media, and the effective pixel size, offset, and 

gain on the camera, were obtained from the SMLM challenge. We segmented the datasets into sub-regions 

to construct the PSF library, estimate the pupil, and localize their positions. We set initial intensity threshold 

𝐼୧୬୧୲ to 25, segmentation threshold 𝐼ୱୣ to 40, similarity threshold Sim୫୧୬ to 0.5, and group threshold 𝑁 to 

30. For the biplane dataset, we set the sub-region size to 32 × 32 pixels, distance threshold 𝑑୲୦୰ୣୱ୦ to 18, 

and the biplane distance to 500 nm, as well as shifting sub-regions in two planes together. The templates 

were generated at axial positions from –1 to +1 μm with a step size of 62.5 nm. For the astigmatism-based 

dataset, we set the sub-region size to 26 × 26 pixels and 𝑑୲୦୰ୣୱ୦ to 14, in order to get more sub-regions of 

PSFs. The templates were generated at axial positions from –800 to +800 nm with a step size of 60 nm. We 

set the amplitude of vertical astigmatism to –1.5 (unit, λ/2π) as initial guess. For 3D single-molecule 

localization, we set the sub-region size to 16 × 16 pixels and 𝑑୲୦୰ୣୱ୦ to 6. We observed that INSPR allowed 

blind reconstruction for both biplane and astigmatism datasets without calibration PSFs. We also observed 

the reconstruction from the biplane dataset appeared to be closer to the ground truth than that from the 

astigmatism-based dataset. This is likely caused by the larger axial range in the biplane dataset, which made 

phase retrieval more accurate. The 3D PSFs of the z-stack beads for both biplane and astigmatism-based 

setups obtained from the calibration files in the SMLM challenge were compared with INSPR retrieved 

ones in Fig. 3e and Extended Data Fig. 3g,n.  

 

3.2.  Distorted wavefront verification 

We tested the accuracy of distorted wavefront estimation from single-molecule blinking datasets (Fig. 2e,f, 

Supplementary Video 3). The deformable mirror was calibrated to introduce individual Zernike-based 

aberration modes (Wyant order, from vertical astigmatism to tertiary spherical aberration, 21 modes in total) 

as described in ‘Calibration of deformable mirror’ section. For each Zernike mode, the single-molecule 

emission patterns were distorted by the introduced Zernike-based aberrations (amplitudes at ±1, unit, λ/2π) 

and fed into INSPR after acquisition to retrieve the in situ PSF and its corresponding pupil function 

(parameters used for INSPR are shown in Supplementary Table 2). We decomposed the retrieved pupil 

functions into 21 Zernike modes, and obtained their amplitudes. To eliminate the influence of instrument 

imperfections which introduces an offset to the retrieved amplitude, we calculated the difference between 

the retrieved amplitudes when the amplitude of the input Zernike mode is equal to +1 and –1 (unit, λ/2π), 

and divided this difference by 2. After processing 21 Zernike modes, we built a heat map representing the 

relationship between the input and output amplitudes of Zernike modes. The estimation error between using 
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INSPR and the in vitro method for each Zernike mode was carried out by calculating the difference of the 

amplitudes at the diagonal elements of the heat map. Besides, we calculated the RMSE between the 21 in 

situ retrieved amplitudes and the 21 in vitro retrieved amplitudes for each Zernike mode, and got an average 

RMSE of 23 mλ for the total 21 Zernike modes. 

 

3.3.  3D PSF quantification of 3D super-resolution reconstructions 

The x-y and x-z views of 3D PSFs retrieved from the datasets in Fig. 3r and Extended Data Fig. 6c 

(TOM20), Supplementary Fig. 2 (Nup98), Supplementary Fig. 3 (amyloid β), Supplementary Fig. 4a 

(ChR2-EYFP), and Supplementary Fig. 4b (elastic fibers) were generated by the retrieved pupil functions 

(as described in ‘PSF generation’ section). We first retrieved a 3D PSF by using the in vitro method (phase 

retrieval based on fluorescent beads on the coverslip) with an axial range from –800 to +800 nm and a step 

size of 100 nm as reference. Then, in each optical section, we generated a series of in situ PSFs in the same 

axial range, but with a defocus offset. We set the offset values from –500 to +500 nm away from the focal 

plane with a step size of 50 nm. By calculating the 3D cross correlation, we found the best matched 3D PSF 

and assigned this 3D PSF to the corresponding optical section. The magnitude of the retrieved pupil function 

𝐴൫𝑘௫, 𝑘௬൯ in each optical section is normalized so that ∬ห𝐴൫𝑘௫, 𝑘௬൯ห
ଶ

d𝑘௫ d𝑘௬ ൌ 1, and the size of the 

pupil function is limited by 𝑘௫
ଶ   𝑘௬

ଶ  ቀே

ఒ
ቁ

ଶ
, where NA is the numerical aperture of the objective lens 

and 𝜆 is the emission wavelength in air. 

 

3.4.  Profile quantification of 3D super-resolution reconstructions 

Intensity profiles in reconstruction images were measured with the line profile tool in ImageJ49, and then 

fitted with Gaussian functions. To obtain reliable profiles, for the datasets in Fig. 4 and Extended Data 

Fig. 7 (Nup98), we used a pixel size of 6 nm and a standard deviation of 1 pixel (Gaussian blur) in 

reconstruction images. For other datasets, we used a pixel size of 12 nm and a Gaussian blur of 1 pixel in 

reconstruction images. 

For the datasets in Fig. 3f–s and Extended Data Fig. 6 (TOM20), we generated reconstruction images of 

25 outer membrane structures in the y’-z plane, and obtained their intensity profiles along both y’ and z 

directions. Here the orientation of the cross section was rotated to allow projection of the 3D membrane 

bounded structures to the 2D image. For the datasets in Fig. 4 and Extended Data Fig. 7 (Nup98), we got 

intensity profiles of 40 Nup98 structures in the x-y plane and 20 Nup98 structures in the x-z plane. For the 
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datasets in Fig. 5 and Supplementary Fig. 14a–d (amyloid β), we got intensity profiles of 40 fibrils in both 

x-y and x-z planes. For the dataset in Fig. 6h and Supplementary Fig. 14e,f (elastic fibers), we got intensity 

profiles of 15 long elastic fibers (3–5 measurements for each, 53 measurements in total) and 7 short fibers 

(single measurement for each) in the x-y plane and 40 fibers in the x-z plane.  

Intensity profiles of immunofluorescence-labeled TOM20 in COS-7 cells in the y’-z plane (along the y’ or 

z direction) and Nup98 in COS-7 cells in the x-y plane (along the y direction) were fitted with a linear 

combination of two Gaussian functions 𝑓ሺ𝑥ሻ ൌ 𝑎ଵ𝑒
ି

ሺೣషഋభሻమ

మభమ  𝑎ଶ𝑒
ି

ሺೣషഋమሻమ

మమమ  𝑏 , where 

ሺ𝑎ଵ, 𝑎ଶ, 𝜇ଵ, 𝜇ଶ, 𝜎ଵ, 𝜎ଶ, 𝑏ሻ are fitting parameters, 𝜇ଵ  and 𝜇ଶ  are the positions of the centers of the peaks, 

|𝜇ଶ െ 𝜇ଵ| represents the width of the contour along the fitting direction, 𝜎ଵ  and 𝜎ଶ  are the standard 

deviations representing the widths of the structure boundary.  

Intensity profiles of immunofluorescence-labeled Nup98 in COS-7 cells in the x-z plane (along the z 

direction), and amyloid β plaques and elastic fibers in both x-y and x-z planes (along the direction 

perpendicular to the fibers) were fitted with a Gaussian function 𝑓ሺ𝑥ሻ ൌ 𝑎𝑒ି
ሺೣషഋሻమ

మమ  𝑏, where ሺ𝑎, 𝜇, 𝜎, 𝑏ሻ 

are fitting parameters, 𝜇 is the position of the center of the peak, 𝜎 is the standard deviation. The full width 

at half maximum (FWHM) of the Gaussian function is equal to 2√2ln2𝜎 ൎ 2.355𝜎. 

 

3.5.  Axial slice quantification of 3D super-resolution reconstructions 

We compared the axial slices of images reconstructed by INSPR and in vitro approaches. For the dataset in 

Extended Data Fig. 4 (TOM20), the images were reconstructed using INSPR, ZOLA-3D, and cubic spline 

from beads on the coverslip. For the datasets in Extended Data Fig. 5 (TOM20), the images were 

reconstructed using INSPR and microsphere-calibrated Gaussian fitting. For the dataset in Extended Data 

Fig. 7h,i (Nup98), the thickness of the central cross section of the entire nuclear envelope was measured 

from reconstruction results using INSPR and PR. For the datasets in Extended Data Fig. 8 and 

Supplementary Fig. 9 (ChR2-EYFP), the images were reconstructed using INSPR, PR, and PR+IMM. For 

the datasets in Extended Data Fig. 9 (ChR2-EYFP), the images were reconstructed using INSPR and PR 

in gel. For the dataset in Extended Data Fig. 10 (elastic fibers), we measured the angles of individual 

elastic fibers in the x-z slices resolved by INSPR, PR, and PR+IMM.  

Intensity profiles in these reconstruction images were also measured with the line profile tool in ImageJ. 

We used a pixel size of 12 nm and a Gaussian blur of 1 pixel in reconstruction images. We fitted intensity 
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profiles with a linear combination of two Gaussian functions, and then calculated the distance between the 

centers of the two peaks.  

The diffraction limited images in axial slices (Fig. 6c,f,g) were generated by convolution between 

reconstructed images and in situ PSF models. 

 

3.6.  Axial thickness quantification of 3D super-resolution reconstructions 

Inaccurate PSF models shrink or expand reconstructed cellular volume as shown in Supplementary Fig. 

1d. Stacking multiple shrunk/expanded super-resolution volumes will result in either horizontal stripe 

artifacts in the axial cross section (when using a fixed distance between adjacent super-resolution volumes 

during stacking) or a shrunk axial range of the entire volume (when using 3D cross correlation for optical 

section alignment16 – used in this work). Although it might be difficult to get the ground truth thickness of 

the imaged nuclear envelope, we can give a rough estimation as follows. 

In biplane setup, the axial range of localization in one optical section is approximately ±0.8 μm (depending 

on the structure distribution), and the z-piezo stage movement between adjacent optical sections 𝑡ୱୣୡ is 0.4 

μm. When considering the refractive index mismatch, the rescaled thickness between adjacent optical 

sections 𝑡′ୱୣୡ is equal to 𝑡ୱୣୡ𝑛୵/𝑛୭, where 𝑛୵ and 𝑛୭ are the refractive indices of the imaging medium and 

the objective immersion medium, respectively. In our experimental conditions, 𝑛୵ ൌ 1.352  and 𝑛୭ ൌ

1.406. Therefore, 𝑡′ୱୣୡ  can be estimated as 0.4 ൈ
ଵ.ଷହଶ

ଵ.ସ
ൌ 0.385 μm. If a dataset has 𝑁 optical sections, the 

thickness is estimated as 0.8  ሺ𝑁 െ 1ሻ ൈ 𝑡ᇱ
ୱୣୡ  0.8 ൌ 1.6  ሺ𝑁 െ 1ሻ ൈ 0.385 μm. 

The dataset in Fig. 4e (Nup98) has 14 optical sections, so the estimated axial thickness is 1.6  ሺ14 െ 1ሻ ൈ

0.385 ൌ 6.6 μm , which matches the thickness of the INSPR reconstructed structures 6.4 μm 

(Supplementary Table 1), rather than that of the in vitro reconstructed structures 5.3 μm. The dataset in 

Fig. 6a (ChR2-EYFP) has 7 optical sections, so the estimated axial thickness is 1.6  ሺ7 െ 1ሻ ൈ  0.385 ൌ

3.91 μm, which matches the thickness of the INSPR reconstructed structures 4.2 μm (Supplementary 

Table 1), rather than that of the in vitro reconstructed structures 3.4 μm (using PR/PR+IMM). The dataset 

in Fig. 6h (elastic fibers) has 5 optical sections, so the estimated axial thickness is 1.6  ሺ5 െ 1ሻ ൈ 0.385 ൌ

3.1 μm, which matches the thickness of the INSPR reconstructed structures 3.1 μm (Supplementary Table 

1), rather than that of the in vitro reconstructed structures 2.3 μm (using PR) or 2.7 μm (using PR+IMM). 
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3.7. Resolution quantification of mitochondrial network in axial cross sections 

We used Fourier ring correlation50 (FRC) plugin tool in ImageJ to quantify the resolution of mitochondrial 

network in axial cross sections (Fig. 3g–l, Supplementary Fig. 15a–h). To increase the reliably of 

calculation, each dataset was calculated 20 times in random orders. Statistical results are shown in 

Supplementary Table 3, and typical FRC curves are shown in Supplementary Fig. 15i–p. Although we 

could visually verify the improvement using INSPR and the in vitro method, our FRC result from these 

cross-section reconstruction shows only slight improvement comparing INSPR to the in vitro method 

(Supplementary Table 3). This is likely caused by the requirement of FRC: isotropic resolution in both 

directions. The axial resolution in our cross-section images is typically 2–3 times poorer than lateral 

(Supplementary Table 1) and thus FRC might underestimate the improvement in the axial direction. As 

an example, the reconstructed y’-z section image shown in Supplementary Fig. 15h contains membrane 

contours that are sharper than Supplementary Fig. 15g in the axial direction, and their line profiles in the 

axial direction shown in Fig. 3p are measured to be ~30% thinner than those in Fig. 3o. However, when 

calculating FRC resolutions (Supplementary Fig. 15o,p), the difference is reported to be ~8%.  
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