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The human body at cellular resolution: the 
NIH Human Biomolecular Atlas Program
HuBMAP consortium*

Transformative technologies are enabling the construction of three-dimensional maps of tissues with unprecedented 
spatial and molecular resolution. Over the next seven years, the NIH Common Fund Human Biomolecular Atlas Program 
(HuBMAP) intends to develop a widely accessible framework for comprehensively mapping the human body at single-
cell resolution by supporting technology development, data acquisition, and detailed spatial mapping. HuBMAP will 
integrate its efforts with other funding agencies, programs, consortia, and the biomedical research community at large 
towards the shared vision of a comprehensive, accessible three-dimensional molecular and cellular atlas of the human 
body, in health and under various disease conditions.

the human body is an incredible machine. 
Trillions of cells, organized across an array of 
spatial scales and a multitude of functional 

states, contribute to a symphony of physiology. While 
we broadly know how cells are organized in most tis-
sues, a comprehensive understanding of the cellular and molecular states 
and interactive networks resident in the tissues and organs, from organiza-
tional and functional perspectives, is lacking. The specific three-dimensional 
organization of different cell types, together with the effects of cell–cell and 
cell–matrix interactions in their natural milieu, have a profound impact on 
normal function, natural ageing, tissue remodelling, and disease progression 
in different tissues and organs. Recently, new technologies have enabled the 
molecular characterization of a multitude of cell types1–4 and mapping of 
their spatial relationships in complex tissues at unprecedented scale and  
single-cell resolution. These advances create the opportunity to build a 
high-resolution atlas of three-dimensional maps of human tissues and organs.

HuBMAP (https://commonfund.nih.gov/hubmap) is an NIH-
sponsored program with the goals of developing an open framework and 
technologies for mapping the human body at cellular resolution as well 
as generating foundational maps for several tissues obtained from nor-
mal individuals across a wide range of ages. A previous NIH-sponsored 
project, GTEx5, examined DNA variants and bulk tissue expression pat-
terns across approximately a thousand individuals, but HuBMAP is a 
distinct project focused on generating molecular maps that are spatially 
resolved at the single-cell level but using samples from a more limited 
number of people. To achieve these goals, HuBMAP has been designed 
as a cohesive and collaborative organization, with a culture of open-
ness and sharing using team science-based approaches6. The HuBMAP 
Consortium (https://hubmapconsortium.org/) will actively work with 
other ongoing initiatives including the Human Cell Atlas7, Human 
Protein Atlas8, LIfeTime (https://lifetime-fetflagship.eu/), and related 
NIH-funded consortia that are mapping specific organs (including the 
brain9, lungs (https://www.lungmap.net/), kidney (https://kpmp.org/
about-kpmp/), and genitourinary (https://www.gudmap.org/) regions) 
and tissues (especially pre-cancer and tumours10; https://humantumor-
atlas.org), as well as other emerging programs.

HuBMAP organization and approaches
The HuBMAP consortium comprises members with diverse expertise 
(for example, molecular, cellular, developmental, and computational  

biologists, measurement experts, clinicians, 
pathologists, anatomists, biomedical and software 
engineers, and computer and data information  
scientists) and is organized into three components: 
(1) tissue mapping centres (TMCs); (2) HuBMAP 

integration, visualization and engagement (HIVE) collaborative  
components; and (3) innovative technologies groups (transformative 
technology development (TTD) and rapid technology implementation 
(RTI)) (Fig. 1). Throughout the program, HuBMAP will increase the 
range of tissues and technologies studied through a series of funding 
opportunities that have been designed to be synergistic with other 
NIH-funded and international efforts. In the later stages of HuBMAP, 
demonstration projects will be added to show the utility of the gener-
ated resources and, importantly, to engage the wider research commu-
nity to analyse HuBMAP data alongside data from other programs or 
their own labs.

Tissue and data generation
The HuBMAP TMCs will collect and analyse a broad range of largely 
normal tissues, representing both sexes, different ethnicities and a  
variety of ages across the adult lifespan. These tissues (Fig. 2) include: 
(1) discrete, complex organs (kidney, ureter, bladder, lung, breast, 
small intestine and colon); (2) distributed organ systems (vasculature);  
and (3) systems comprising dynamic or motile cell types with dis-
tinct microenvironments (lymphatic organs: spleen, thymus, and 
lymph nodes). Tissue will be collected at precisely defined anatomical  
locations (when possible, photographically recorded) according to 
established protocols that preserve tissue quality and minimize deg-
radation. Beyond meeting standard regulatory requirements, to the 
greatest extent possible, consent will be obtained so that the generated 
data is available for open-access data sharing (that is, public access 
without approval by data committees), to maximize their usage by the 
biomedical community.

To achieve spatially resolved, single-cell maps, the TMCs will use a 
complementary, iterative, two-step approach (Fig. 3). First, ’omic assays, 
which are extremely efficient for data acquisition, will be used to generate  
global genome sequence and gene expression profiles of dissociated 
single cells or nuclei in a massively parallel manner. The molecular state 
of each cell will be revealed by single-cell transcriptomic11 and, in many 
cases, chromatin accessibility12,13 assays; imputation of transcription 
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factor binding regions from the open chromatin data combined with 
the gene expression data will be used to explain the regulation of gene 
expression across the distinct cell types14. Second, spatial information 
(abundance, identities, and localization) will be acquired for various 
biomolecules (RNA15, protein16, metabolites, and lipids) in tissue 
sections or blocks, using imaging methodologies such as fluores-
cent microscopy (confocal, multiphoton, lightsheet, and expansion), 
sequential fluorescence in situ hybridization (seqFISH)17,18, imaging 
mass spectrometry19,20, and imaging mass cytometry (IMC)21–24. The 
extensive single-cell and nucleus profiles obtained will inform in situ 
modalities (for example, single-cell or nucleus RNA sequencing will 
be used to choose probes for RNA or proteins), which will provide 
spatial information for up to hundreds of molecular targets of interest. 
These data will allow the computational registration of cell-specific 
epigenomic or transcriptomic profiles to cells on a histological slide 
to reveal various microenvironmental states. They will potentially 
include information about protein localization to cytoplasm, nucleus, 
or cell surface; phosphorylation; complex assembly; extracellular 
environment; and cellular phenotype determined by protein marker 
coexpression. Registration and computational integration of complex 
imaging data will provide biological insights beyond any single imag-
ing mode19,25. The powerful combination of single-cell profiling and 
multiplexed in situ imaging will provide a pipeline for constructing 
multi-omics spatial maps for the various human organs and their cel-
lular interactions at a molecular level.

The TMCs will use complementary methods for data collection with 
an emphasis on processes to ensure the generation of high-quality data 
and standardized metadata annotations. Benchmarking, quality assur-
ance and control standards, and standard operating procedures, where 
appropriate, will be developed for each stage of the methodological pro-
cess and be made available to promote rigor, reproducibility and trans-
parency. It is expected that quality assurance and control standards for 
both biospecimens and data will evolve as tissue collection, processing 
techniques, storage and shipping conditions, assays, and data-processing  
tools change, and as HuBMAP interacts and collaborates with other 

related efforts, as they have for other consortium projects26–31. Where 
possible, metadata related to preanalytical variables (for example, 
annotations and nomenclature) and technologies will be harmonized, 
and protocols and standards will be shared with the wider research 
community.

Building an integrated tissue map across scales
The diversity of data generated by HuBMAP, ranging across macro-
scopic and microscopic scales (for example, anatomical, histological, 
cellular, molecular and genomic) and multiple individuals, is essen-
tial to its core mission. Exploring each of these valuable datasets 
collectively will yield an integrated view of the human body. Hence, 
HuBMAP will develop analytical and visualization tools to bridge 
spatial and molecular relationships in order to help to generate a 
high-resolution three-dimensional molecular atlas of the human 
body.

The volume of data generated and collected by HuBMAP will 
require the utilization, extension and development of tools and pipe-
lines for data processing. While we expect that initial data-processing 
tools will be based on methods developed by consortium members, 
HuBMAP will also work with and incorporate algorithms developed 
by other programs and the wider research community to supplement, 
enhance or update its pipelines. To this end, HuBMAP will develop 
one or more portals tailored to emerging use cases identified through 
a series of user needs. These open source portals will use recognized 
standards and be interoperable with other platforms, such as the HCA 
Data Coordination Platform, making it possible to readily add, update, 
and use new software modules (for example, as with Dockstore32 and 
Toil33). The portion of HuBMAP data that will be open source can 
live on or be accessed from multiple platforms, enhancing its util-
ity. This infrastructure will enable external developers to apply their 
codes, applications, open application programming interfaces, and data 
schema to facilitate customized processing and analysis of HuBMAP 
data in concert with other data sources. Furthermore, by actively work-
ing with other global and NIH initiatives, the consortium will seek to 
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Fig. 1 | The HubMAP consortium. The TMCs will collect tissue samples 
and generate spatially resolved, single-cell data. Groups involved in 
TTD and RTI initiatives will develop emerging and more developed 
technologies, respectively; in later years, these will be implemented at 
scale. Data from all groups will be rendered useable for the biomedical 
community by the HuBMAP integration, visualization and engagement 
(HIVE) teams. The groups will collaborate closely to iteratively refine the 
atlas as it is gradually realized.
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Fig. 2 | Key tissues and organs initially analysed by the consortium. 
Using innovative, production-grade (‘shovel ready’) technologies, 
HuBMAP TMCs will generate data for single-cell, three-dimensional maps 
of various human tissues. In parallel, TTD projects (and later RTI projects) 
will refine assays and analysis tools on a largely distinct set of human 
tissues. Samples from individuals of both sexes and different ages will be 
studied. The range of tissues will be expanded throughout the program.
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reduce the barriers to browsing, searching, aggregating, and analysing 
data across portals and platforms.

To fully integrate spatial and molecular data across individuals, 
HuBMAP will create a common coordinate framework (CCF) that 
defines a three-dimensional spatial representation, leveraging both an 
early consortium-wide effort to standardize technologies and assays 
using a single common tissue and the broader range of tissues of the 
human body analysed across multiple scales (whole body to single 
cells). This spatial representation will serve as an addressable scaf-
fold for all HuBMAP data, enabling unified interactive exploration 
and visualization (search, filter, details on demand) and facilitating 
comparative analysis across individuals, technologies, and laborato-
ries34,35. To achieve these objectives, HuBMAP envisions a strategy 
inspired by other tissue atlas efforts36–38 that leverages the identifica-
tion of ‘landmark’ features, including key anatomical structures and 
canonical components of tissue organization (for example, epidermal 
boundaries and normally spatially invariant vasculature) that can 
be identified in all individuals. These landmarks will enable a ‘semi- 
supervised’ strategy for aligning and assembling an integrated reference,  
upon which HuBMAP investigators can impose diverse coordinate 
systems, including relative representations and zone-based projec-
tions. As one example, an open-source, computational histology 
topography cytometry analysis toolbox (histoCAT39) currently facili-
tates two-dimensional visualization and will soon also be applicable to 
three-dimensional reconstruction. Ontology-based frameworks will 
be explored in parallel to effectively categorize, navigate, and name 
multiscale data; synergies are expected between these two approaches. 
Whenever available, medical imaging, such as CT and MRI informa-
tion, will serve as a basis for landmarking and constructing the CCF.

Technology development and implementation
Quantitative imaging of different classes of biomolecule in the same 
tissue sample with high spatial resolution, sensitivity, specificity, and 
throughput is central to the development of detailed tissue maps. 
Although no single technique can fully address this challenge at pres-
ent, the development and subsequent multiplexing of complementary 
capabilities provides a promising approach for accelerating tissue 
mapping efforts. The HuBMAP innovation technologies groups aim 
to develop several innovative approaches that will address the limita-
tions of existing state-of-the-art techniques. For example, transform-
ative technologies such as signal amplification by exchange reaction 
(SABER)40,41, seqFISH18,42,43, and Lumiphore probes44 will be refined to 
improve multiplexing, sensitivity, and throughput for imaging RNA and 
proteins across multiple tissues. Furthermore, new mass spectrometry 
imaging techniques will enable the quantitative mapping of hundreds 
of lipids, metabolites, and proteins from the same tissue section with 
high spatial resolution and sensitivity45,46. There is also scope within the 
program to develop and test new technologies. These efforts will benefit 
from the development of new computational tools and machine learn-
ing algorithms, optimized first from data generated from a common 
tissue during the pilot phase, for data integration across modalities.

Challenges
Previous programs such as GTEx5 have faced the challenge of opti-
mizing the collection, preservation, and processing of a wide variety 
of tissue types from multiple donors. However, one of the goals of 
HuBMAP, to generate comprehensive, interactive high-resolution maps 
using a wide variety of assays, introduces an added level of complex-
ity. Mapping functionally important biomolecules, including some of 
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Fig. 3 | Map generation and assembly across cellular and spatial 
scales. HuBMAP aims to produce an atlas in which users can refer to a 
histological slide from a specific part of an organ and, in any given cell, 
understand its contents on multiple ’omic levels—genomic, epigenomic, 
transcriptomic, proteomic, and/or metabolomic. To achieve these ends, 
centres will apply a combination of imaging, ’omics and mass spectrometry 

techniques to specimens collected in a reproducible manner from specific 
sites in the body. These data will be then be integrated to arrive at a high-
resolution, high-content three-dimensional map for any given tissue. To 
ensure inter-individual differences will not be confounded with collection 
heterogeneity, a robust CCF will be developed.
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which we may not even be aware and for which sensitive, specific, and 
high-throughput assays are still lacking, will require close attention. 
Moreover, the program will produce an unprecedented volume and 
diversity of datasets for comprehensive data capture, management, 
mining, modelling, visual exploration and communication. The  
integration of data from different modalities is required for generating 
robust maps; it will be necessary to develop corresponding analysis 
and interactive visualization tools to ensure that the data and atlas are 
accessible to the entire life-sciences community. Finally, given the enor-
mity of a human atlas, HuBMAP faces the challenges of prioritization 
of tissues and technologies, sampling across tissues and donors, and  
optimally synergizing its efforts with international efforts. Determining 
the number of cells, fields of view, and samples needed to capture rare 
cell types, states or tissue structures is an important challenge, but 
can be tackled with adaptive power analyses, leveraging the growing  
amount of data available both within HuBMAP and from other  
consortia as well as individual groups.

Resources and community engagement
HuBMAP is an important part of the international mission to build a 
high-resolution cellular and spatial map of the human body, and we are 
firmly committed to close collaboration and synergy with the afore-
mentioned initiatives to build an easy-to-use platform and interop-
erable datasets that will accelerate the realization of a high-resolution  
human atlas. Shared guiding principles around open data, tools, and 
access will enable collaborative and integrated analyses of data pro-
duced by diverse consortia. To achieve this synergy, HuBMAP and 
other consortia will work together to tackle common computational 
challenges, such as cellular annotation, through formal and informal 
gatherings focused on addressing these problems, planned joint bench-
marking and hands-on jamborees and workshops. Another example of 
the potential for close collaboration is in the study of the colon; multi-
ple projects funded by HuBMAP, the Human Tumour Atlas Network, 
and the Wellcome Trust will be complemented by projects funded by 
the Leona M. and Harry B. Helmsley Charitable Trust. With projects 
focusing on partly distinct regions and diseases (for example, normal 
tissue, colon cancer, and Crohn’s disease), it will be important for all 
of the programs to ensure that data are collected and made available 
in a consistent manner, and HuBMAP will play an active part in such 
efforts. As a concrete next step, HuBMAP, in collaboration with other 
NIH programs, plans to hold a joint meeting with the Human Cell Atlas 
initiative to identify and work on areas of harmonization and collab-
oration during the spring of 2020. In parallel, HubMAP participants 
engage in the meetings and activities of other consortia, such as the 
Human Cell Atlas or the Human Tumour Atlas Network, thus forming 
tight connections. We have started a series of open meetings to develop 
the CCF, with the first of these recently held in collaboration with the 
Kidney Precision Medicine Program and focused on the kidney.

HuBMAP will provide capabilities for data submission, access, and 
analysis following FAIR (findable, accessible, interoperable, and reus-
able) data principles47. We will develop policies for prompt and reg-
ular data releases in commonly used formats, consistent with similar 
initiatives. We anticipate that the first round of data will be released 
in the summer of 2020, with subsequent releases at timely intervals 
thereafter. Robust metadata will comprise all aspects of labelling and 
provenance, including de-identified donor information (both demo-
graphic and clinical), details of tissue processing and protocols, data 
levels, and processing pipelines.

Indeed, engagement and outreach to the broader scientific com-
munity and other mapping centres is central to ensure that resources 
generated by HuBMAP will be leveraged broadly for sustained impact. 
To ensure that browsers and visualization tools from HuBMAP are 
valuable, the consortium will work closely with anatomists, patholo-
gists, and visualization and user experience experts, including those 
with expertise in virtual or augmented reality. As described above, we 
expect that the diversity of normal samples included in this project 
will facilitate valuable comparative analyses, pinpointing how cells and 

tissue structures vary across individuals, throughout the lifespan, and 
in the emergence of dysfunction and disease. The program will build 
its resources with these use cases in mind and provide future opportu-
nities, such as the demonstration projects, for close collaboration with 
domain experts. We also anticipate that these data will be highly useful 
for the generation of new biomedical hypotheses, tissue engineering, 
the development of robust simulations of spatiotemporal interactions, 
machine learning of tissue features, and educational purposes.

Conclusions
Analogous to the release of the first human genome build, we anticipate 
that the first reference three-dimensional tissue maps will represent the 
tip of the iceberg in terms of their ultimate scope and eventual impact. 
HuBMAP, working closely with other initiatives, aspires to help to build 
a foundation by generating a high-resolution atlas of key organs in the 
normal human body and capturing inter-individual differences, as well 
as acting as a key resource for new contributions in the growing fields of 
tissue biology and cellular ecosystems. Given the focus of HuBMAP on 
spatial molecular mapping, the consortium will contribute to the com-
munity of efforts seeking similar goals, with a special emphasis on pro-
viding leadership in the development of analytical methods for its data 
types and for developing a common coordinate framework to integrate 
data. Ultimately, we hope to catalyse novel views on the organization of 
tissues, regarding not only which types of cells are neighbouring one 
another, but also the gene and protein expression patterns that define 
these cells, their phenotypes, and functional interactions. In addition 
to encouraging the establishment of intra- and extra-consortium col-
laborations that align with HuBMAP’s overall mission, we envision an 
easily accessible, publicly available user interface through which data 
can be used to visualize molecular landscapes at the single-cell level, 
pathways and networks for molecules of interest, and spatial and tem-
poral changes across a given cell type of interest. Researchers will also 
be able to browse, search, download, and analyse the data in standard 
formats with rich metadata that, over time, will enable users to query 
and analyse datasets across similar programs.

Importantly, we believe that the project’s compilation of different 
types of multi-omic information at the single-cell level in a spatially 
resolved manner will represent an important step in the advancement 
of our understanding of human biology and precision medicine. These 
data have the potential to redefine types or subtypes of cells and their 
relationships within and between tissues beyond the traditional under-
standing that can be obtained through standard methods (for example, 
microscopy and flow cytometry). We hope this work will be part of a 
foundation that enables diagnostic interrogation, modelling, naviga-
tion, and targeted therapeutic interventions at such an unprecedented 
resolution to be transformative for the biomedical field.
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