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13.1  Introduction

The ability to engineer cells with subcellular spatial precision is a very powerful 
and essential tool in synthetic biology. Specifically, co‐localization of proteins, 
DNA, and RNA enhances metabolic output of enzymes [1, 2], allows novel regu-
lation of gene expression [3–5], and can increase the specificity of therapeutics 
[6, 7]. This occurs primarily because co‐localized macromolecules have high 
local concentrations, allowing their activities to be coordinated. Thus, better 
ability to organize proteins, RNAs, lipids, etc. into synthetic macromolecular 
complexes should enable diverse and more complex function than can be 
achieved by solely engineering individual parts.

In this chapter, we illustrate how synthetic RNA constructs are advancing 
efforts toward in vivo spatial engineering. Natural noncoding RNAs already play 
structural and catalytic roles in cells. A breadth of studies has established design 
principles that can be used to predictably shape RNA secondary structures 
[8–11]. Structural malleability of RNA, the ease of expressing synthetic RNA 
constructs in cells, their stability, and advances in methods for assaying and 
imaging assembled structures are some of the many reasons why RNA is a useful 
scaffolding material. Synthetic biology efforts have demonstrated that carefully 
designed RNA can be used for subcellular targeting of probes, enzymes, and 
therapeutic agents.

13.2  Structural Roles of Natural RNA

RNAs perform numerous biological functions as canonical gene expression 
agents, catalysts, gene regulation switches, and structural scaffolds. These struc-
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tural and catalytic roles of RNA are due in large part to the tremendous diversity 
of secondary and tertiary structures assumed by natural RNA and the fact that 
ribose sugars are more reactive than deoxyribose. RNA secondary structures can 
include intricate motifs like double helices, hairpin loops, bulges, pseudoknots, 
and right‐angled turns [12, 13]. Aside from the Watson–Crick base pairing, RNA 
has the capacity to form Hoogsteen base pairs as well as wobble base pairs. Such 
interactions allow motifs to be connected in higher‐order tertiary interactions, 
predominantly through the non‐Watson–Crick base pairs [14, 15].

13.2.1 RNA as a Natural Catalyst

Catalytic roles of RNA during translation, like the tRNA shown in Figure 13.1a, 
disrupted a simple view held by the central dogma that RNA exists merely to 
transfer genetic information from DNA to protein. Today we know that RNA 
has catalytic and regulatory roles in many other cellular processes as well. 
Regulatory RNA structures play a significant role in the control of translation 
initiation of several bacterial genes and in bacterial immunity [17]. RNAs affect 
expression in cis, by forming secondary structures near translation start sites of 
the mRNA. The cis regions can bind to regulatory proteins or other RNAs that 
affect translation in trans [17]. Other similarly dynamic regulatory RNA regions 
can consist of aptamers, which are nucleic acids that selectively bind ligands 
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Figure 13.1 Prevalence and diversity of secondary structure in natural RNA. (a) The alanine‐
carrying transfer RNA shown here has the typical clover leaf structure common among tRNA. 
(b) The theophylline‐binding riboswitch (from PDB: 1O15_A) is a canonical riboswitch. 
(c) The PP7 aptamer [16] binds to the PP7 coat protein with low nanomolar affinity. 
(d) The Homo sapiens TERC lncRNA (NR_001566.1) is an example of a natural lncRNA that 
serves as a scaffold.
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[18]. Many metabolic genes are “switched” on or off, triggered by the binding of 
small molecule metabolites to some of these regulatory RNAs known as ribos-
witches (Figure 13.1b) [19].

13.2.2 RNA Scaffolds in Nature

There are also several instances of natural RNAs that are largely structural. Some 
natural RNAs are known to specifically bind the coat proteins of single‐strand 
RNA phages. Such interactions help package the RNA into viral capsids. Some 
RNA phages that have well‐characterized RNA‐binding proteins include PP7 
(Figure 13.1c) [16], MS2 [20], and Qβ [21]. These coat proteins also act as repres-
sors of the viral replicase translation by specifically binding RNA hairpins near 
the origin of replication. In the bacteriophage Φ29, a short (117–174 nt) sequence 
of packaging RNA (pRNA) helps to pack phage DNA into preformed capsids 
[22]. A DNA packaging motor is composed of a pentameric ring of pRNA, capsid 
proteins, dsDNA, and an ATPase [23]. Studies characterizing the specificity and 
stoichiometries of these interactions [16, 24–26] have laid the foundation for 
RNA‐tagging‐based applications that we look at in Section 13.4.

RNA scaffolds are important in eukaryotic gene expression as well. Mammalian 
cells appear to extensively employ long noncoding RNAs (lncRNAs). These 
lncRNAs (Figure 13.1d) are rich with secondary structure motifs [27, 28], some 
of which bind and coordinate proteins on scaffolds that play important roles in 
epigenetic regulation [29, 30] and telomere maintenance [31, 32].

Thus, natural RNA diversity offers a template of diverse structure and function 
for synthetic biologists. In the following section, we look at how natural observa-
tions have been translated into an understanding of the means to precisely engi-
neer structure and dynamics of RNA.

13.3  Design Principles for RNA Are Well Understood

In order to design, build, and test structures at the molecular scale, one must 
understand the physical properties of the building material. In particular, if one 
uses a biopolymer such as a protein or nucleic acid to build a higher‐order struc-
ture, the folding properties of that polymer will dictate the structure. This is 
especially a challenge in the case of protein engineering, where protein structure 
is extremely difficult to predict ab initio [33, 34]. As a result, many protein engi-
neers have focused on substituting functional rather than structural residues in 
existing proteins [35]. Unlike proteins, nucleic acids have a well‐defined helical 
structure governed by a simple set of complementarity rules [36] with some 
exceptions such as wobble pairing and G quadruplexes [37, 38]. As a result, the 
structural and folding properties of RNA are generally well understood. In addi-
tion, RNA is a dynamic molecule [39–42] that can self‐assemble into structures 
in vitro [13, 43–46] and can be easily transcribed from a DNA template in vivo. 
RNA functionality can also be improved using in vitro selection [47, 48]. For 
these reasons, RNA makes a suitable material for constructing synthetic in vivo 
nanostructures.
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13.3.1 RNA Secondary Structure is Predictable

Most RNAs fold into a secondary structure consisting of a series of base‐paired 
stems and unpaired loops. This secondary structure is largely determined by 
complementary bases within the primary RNA sequence. As a result, RNA sec-
ondary structure can be predicted computationally using a variety of methods. 
This typically involves using a model of the free energy of RNA base pairing 
[49,  50] to determine the minimum free energy secondary structure [8–11]. 
Structures with near‐optimal folds are also calculated by these software packages, 
since they may be of interest, and partition functions are used to determine the 
relative probabilities of particular secondary structures based on their energetics 
(Figure 13.2a) [8–11]. Additional factors, such as wobble base pairing, pseudo-
knots, and dangling bases, are often incorporated into these calculations [8, 55].

Several software packages have been developed for the purpose of calculating 
DNA or RNA secondary structure. These include UNAFold, RNAstructure, 
NUPACK, and ViennaRNA [8–10, 55]. The software is typically implemented as 
a web server that can be used to run calculations using an online interface; it is 
also possible to install a local copy of the software. Each package has a somewhat 
different feature set (see Table 13.1 for details). For example, RNAstructure can 
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Figure 13.2 Design principles for RNA structure and function. (a) RNA secondary structure 
can be predicted from the primary sequence using a variety of software packages. (b) RNA can 
self‐assemble into 2D or 3D structures in vitro. (c) Researchers have developed a variety of 
synthetic parts, such as synthetic riboregulators, synthetic ribozymes, ligand‐regulated 
riboregulators, and ligand‐regulated ribozymes [51–54]. (d) In vitro selection can be used to 
enhance the function of RNAs through iterative rounds of amplification and selection.
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integrate user‐supplied experimental data such as selective 2′ hydroxylation and 
primer extension (SHAPE) [56] or NMR to aid in structure calculation and has a 
convenient graphical user interface [10]. ViennaRNA is designed to be computa-
tionally efficient for testing many RNA structures in batches rather than for 
analyzing individual species in more detail [8]. UNAFold is derived from mfold, 
which used the first dynamic programming algorithm for predicting RNA 
secondary structure [9, 57]. A particularly useful package for designing RNA 
structures is NUPACK, which can handle multi‐strand interactions and allows 
the user to design sequences that have a propensity to assemble into a user‐
defined set of secondary structures [55, 58]. Given the diversity of software pack-
ages for predicting RNA secondary structure, it is important to choose the right 
software package for one’s particular design needs.

13.3.2 RNA can Self‐Assemble into Structures

RNA can self‐assemble into geometrically precise structures in vitro (Figure 13.2b). 
This was first shown for small RNA molecules with four stem‐loops (tectoRNAs), 
which self‐assemble into 1D structures using kissing loops [59], but has since been 
extended to form a variety of geometrically precise 2D and 3D shapes [13, 43–46, 
60]. Of particular note are the in vivo RNA assemblies [1], which can self‐assemble 
into 1D or 2D lattices. Although in vitro structures have traditionally been formed 
using a thermal annealing process, recent work has shown that single‐stranded 
DNA tiles and bricks [61, 62] can self‐assemble into discrete nanostructures 
isothermally and under biocompatible conditions [63]. Thus, it is possible to self‐
assemble a diverse range of scaffolds using RNA.

13.3.3 Dynamic RNAs can be Rationally Designed

Beyond structure formation, RNA also has the capability to dynamically reconfigure 
itself in response to small molecules or other ligands [39–42]. Such 

Table 13.1 Comparison of features between RNA structure prediction software packages.

Feature NUPACK RNAstructure UNAfold ViennaRNA

MFE calculation • • • •
Partition function • • • •
Wobble pairing • • • •
Pseudoknots • • ⚬ ⚬
Dangling bases • • • •
Multi‐strand interactions • ⚬ ⚬ ⚬
Uses SHAPE/NMR data ⚬ • ⚬ ⚬
Graphical User Interface ⚬ • ⚬ ⚬
Web Interface • • • •

A filled‐in circle indicates that the software package contains the feature in a row, whereas an empty 
circle indicates that the software package does not contain the feature in a row.
MFE, minimum free energy.



13 Synthetic RNA Scaffolds for Spatial Engineering in Cells266

RNAs – ribozymes and riboswitches, respectively – underscore the notion that 
RNAs can be dynamic molecules. However, RNAs can also be rationally designed to 
go beyond their natural function (Figure 13.2c). For example, synthetic riboreg-
ulators can be designed to control genes in the presence of a user‐defined input 
RNA molecule [51]. It is even possible to combine pairs of functional RNAs to 
form more complicated devices, such as by combining riboswitches with ribozymes 
[64], riboswitches with riboregulators [52, 65], or aptamers with transcriptional 
attenuators [66]. These compound RNA devices underscore the notion that RNA 
secondary structure can be programmed to achieve a range of dynamic functions.

13.3.4 RNA can be Selected in vitro to Enhance Its Function

Another powerful technique that has aided the development of many functional 
RNA motifs is in vitro selection or systematic evolution of ligands by exponen-
tial enrichment (SELEX) [47, 48] (Figure 13.2d). This typically involves starting 
with a library of many (1013–1015) distinct RNA sequences and then applying 
iterative rounds of selection (e.g., binding to a small molecule immobilized on a 
surface or catalyzing ligation to a surface‐bound ligand) and amplification (typi-
cally involving polymerase chain reaction (PCR)). After ~10 rounds of selection 
and amplification, the activity of the remaining RNA sequences in the pool can 
be enhanced by several orders of magnitude compared with the initial library 
average [67]. Some functions may not be present in a library of 1015 RNAs; thus 
it may sometimes be necessary to chemically modify or structurally bias the 
initial library [67]. This limitation aside, in vitro selection is a useful technique 
for generating synthetic RNAs with specific functions.

In the two decades since the development of in vitro selection, thousands of 
aptamers (oligonucleotides that bind to a particular ligand) have been developed 
[68]. These include aptamers to small molecules, peptides, and even human and 
cancer cell types [47, 67, 69–71]. In addition to RNA molecules, proteins such as 
epitopes and antibodies have been evolved using in vitro selection [72–74]. Thus, in 
vitro selection can be used to enhance functional portions of an RNA scaffold. This 
is especially useful when existing RNA parts are not sufficient for the task at hand.

13.4  Applications of Designed RNA Scaffolds

RNA sequences consisting of secondary structures and functional units 
designed using the tools described previously can be genetically expressed in 
cells. Such engineered RNAs have been used for tasks ranging from studying 
natural RNA processing in cells to metabolic engineering and therapeutic 
applications.

13.4.1 Tools for RNA Research

While mRNA has long been known to function as a template for protein transla-
tion, the spatiotemporal aspects of the various steps involved in mRNA processing 
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remain poorly understood. Investigation of the dynamics of mRNA as it goes 
through translation, splicing, nuclear export in eukaryotes, localization for trans-
lation, and finally degradation requires tools to track individual RNA molecules. 
Aptamers and their recruitment of fluorescent proteins on engineered mRNA 
scaffolds have enabled such studies.

Some of the earliest attempts to tag RNA in vivo were carried out by expressing 
GFP fused with bacteriophage MS2 coat protein [75] or human RNA‐interacting 
protein domain U1A [76] along with mRNA containing the corresponding bind-
ing sites in Saccharomyces cerevisiae. Such tags enabled tracking of single‐cell 
mRNA localization by microscopy. Furthermore, by incorporating tandem 
repeats of MS2 binding sites on reporter mRNA [77], several GFP–MS2 fusions 
could be localized on a single transcript, enabling tracking of individual mRNA 
molecules in mammalian cells (Figure 13.3a). This in vivo tracking method was 
extended to other systems [82], including bacteria [78, 83].

More recently, several efforts have addressed the long‐standing question of 
whether or not RNA is highly localized within bacterial cells [84, 85]. A signifi-
cant innovation over the previous strategy came from the use of fluorescent 
protein complementation. In this approach, RNA aptamers are used to bring 
together two different protein fusion units, each with a split fluorescent protein 
fused to an RNA‐binding domain (RBD) [79, 86] (Figure 13.3a). Since only the 
scaffolded protein units are able to reconstitute the split chromophore and fluo-
resce, they can be easily distinguished from the unbound ones. Such an approach 
hence achieves lower background signals than systems where autofluorescent 
proteins are directly tagged onto RNA.

As the repertoire of aptamer–RNA‐binding protein pairs is being extended 
through the in vitro methods described in Section 13.3.4, newer combinations 
are being used to explore cellular function [87]. The studies discussed here have 
led to a better understanding of RNA diffusion and localization [78, 79] in bacte-
rial cells and measurement of transcriptional kinetics [88]. These efforts also 
enabled localization of a diverse array of proteins (such as enzymes) on RNA 
scaffolds, opening up applications in metabolic engineering.

13.4.2 Localizing Metabolic Enzymes on RNA

Scaffolding and compartmentalization are effective strategies for optimization of 
metabolic pathway performance in both natural and synthetic systems [89, 90]. 
A few studies have used DNA structures to coordinate the assembly of enzymes 
and study effects of spatial co‐localization in vitro [91–94] and in vivo [95]. 
Protein scaffolds have also been used to channel metabolic substrates between 
co‐localized enzymes in living cells [2, 96]. Scaffolding is seen as a powerful tool 
to specifically direct metabolic pathway flux toward enzymes of choice, prevent 
loss of intermediates to competing reactions, and protect the host cell from any 
toxic or volatile intermediates through confinement at a subcellular location.

A notable effort in the use of RNA scaffolds for metabolic channeling achieved 
a nearly 50‐fold increase in hydrogen gas production in Escherichia coli [1]. This 
effort combined many of the techniques discussed previously. Synthetic RNA 
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strands comprising polymerization domains and aptamers for MS2 and PP7 coat 
proteins were expressed in the bacteria. Dimerization and polymerization 
domains allowed for tiling and assembly into a macromolecular structure. The 
large (40–100 nm) intracellular RNA assemblies greatly enhanced the flux of 
electrons from ferredoxin to hydrogenase when both enzymes were tethered to 
the scaffold with fusions to MS2 and PP7 (Figure 13.3b). Furthermore, significant 
differences in titer were observed for scaffolding structures having different 
geometries, tying metabolic flux to the specific spatial positioning of the scaffold. 
Such an approach brings modular design and scalability [97] to metabolic engi-
neering for biofuels and high value chemical synthesis, where control of interme-
diate metabolite flux can be critical [98–100].

There has been debate about the mechanism by which scaffolds enable meta-
bolic substrate channeling. The transfer of electrons between enzymes relies on 
physical contact and thus is limited by protein diffusion rates and competition, 
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Figure 13.3 Applications of RNA scaffolds in vivo. (a) mRNA are modified to include either 
several repeats of an aptamer or two different aptamers in close proximity. The former 
approach results in concentrated foci of fluorescent protein fusions to RNA‐binding domains 
(RBDs) [78] and in the latter, two halves of the protein with RBD fusions [79], only complement 
to be fluorescent on the mRNA scaffold. (b) Enzymes fused to RBDs localize to self‐assembled 
RNA scaffolds with aptamers presented. Channeling of intermediate metabolites can lead to 
enhanced pathway flux toward biofuels or other high value products [1]. (c) Pentamer of 
bacteriophage Φ29 pRNA [23] from PDB file 1FOQ. Tagging the monomers with functional 
units like siRNA can make them useful drug delivery vehicles [6, 80]. (d) The clover leaf tRNA 
sequence can be tagged with recombinant RNA and epitopes as shown to allow for its 
synthesis and purification [81].
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which are effectively addressed by scaffolding [1]. However, the role of enzyme 
co‐localization in pathways involving diffusible intermediates is much less well 
understood [101, 102]. In a recent study [103], enzymes localized in close prox-
imity, less than 30 nm apart, on in vitro assembled DNA scaffolds exhibited 
enhanced rates of metabolite exchange. The transfer rates dropped precipitously 
with any further increase in interenzyme distance. Since such effects are not 
explicable by 3D diffusion models [101], a mechanism of metabolite substrate 
channeling by restricted diffusion on hydration layers across crowded protein 
surfaces has been proposed [103]. RNA scaffolds, with their predictable geome-
try, can be used to create a range of metabolic channeling platforms and test the 
relative effects from these two different mechanisms.

13.4.3 Packaging Therapeutics on RNA Scaffolds

While metabolic channeling functions relied on RNA interactions with proteins, 
RNA–RNA interactions can also be used for exciting scaffold applications. pRNA 
from bacteriophage Φ29 (referred to in Section 13.2) has been used as a building 
block for bottom‐up assembly of drug delivery vehicles [6, 80] (Figure  13.3c). 
pRNA monomers consist of structural hairpin regions and dimerization/polym-
erization domains. Ends of the hairpin regions offer sites for tagging with drugs 
or targeting molecules. The polymerization domains can be engineered to favor 
formation of dimers, trimers, pentamers, or hexamers as stable drug carriers 
[6,  23, 80]. Heterodimers containing pRNA tagged with a CD4 aptamer and 
pRNA attached to an siRNA were shown to specifically target CD4‐expressing 
T cells, leading to cell death [80]. This in vitro study also showed stability and 
efficacy of the nanoscale drug delivery particles for killing cancer cells. Such sys-
tems are advantageous since the pRNA polymers are hypothesized to be stable in 
physiological conditions and be less immunogenic than protein carriers [80]. 
Finally, these polymers could be made specific to many in situ targets by using 
engineered specific RNA aptamers that recognize cellular moieties.

13.4.4 Recombinant RNA Technology

RNA scaffolds have also been used to serve as protective tethers for the purifica-
tion of recombinant RNA (recRNA) (Figure 13.3d) [81]. In this approach, a tRNA 
scaffold acts as a protective secondary structure to insulate the transcript from 
native E. coli nucleases and therefore stabilize production of recRNA in vivo. The 
characteristic clover leaf tRNA structure formed around a recRNA is recognized 
by native cellular enzymes and processed as tRNA. This ensures that each single 
transcript is a product of specific defined length. A Sephadex affinity tag was 
included in the expressed sequence to allow purification of transcripts that con-
tained RNAs of medical research interest, like the human hepatitis B virus (HBV) 
epsilon [81]. This design thus enables collection of large amounts of purified RNA 
transcripts for in vitro structural studies and vaccine development. Recently, these 
efforts have been extended to expression and purification of RNA–protein com-
plexes [104], providing pure samples that could be used for crystallographic stud-
ies of natural RNA–protein interactions and potential use in cell‐free systems.
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13.5  Conclusion

RNA is a powerful tool to synthetic biologists. RNA scaffolds can be composed 
of many structural, dynamic, and functional regions. Structure design can be 
predicted reliably, and there are a growing number of assays for proper structure 
assembly. In addition, recent advances in DNA construction [105, 106] have 
made it faster and easier to test new structure designs in vivo. Prediction and 
design of RNA structure in three dimensions remains a challenge. The difficulty 
of going from a secondary structure design to precise orientation of tertiary scaf-
fold units needs to be addressed for metabolic engineering and therapeutic 
applications. Additionally, although localization of fluorophores to RNA enables 
in vivo imaging, resolution limits have prevented elucidation of precise geomet-
ric details in RNA scaffolds and assemblies within cells. Future technical advances 
could enable many scientists to construct new RNA scaffolds for a wide range of 
purposes. In the following text, we discuss a particular set of exciting applica-
tions and the technologies that will enable them.

13.5.1 New Applications

Synthetic biologists are constantly seeking to increase the complexity of their 
devices. RNA synthetic biology is offering tools to enable such control [107]. One 
particular goal is the construction of orthogonal ribosomes [108], capable of 
incorporating nonnatural amino acids wherein altered tRNA–protein interactions 
enable an expanded genetic code [109]. RNA scaffolds are also being employed to 
devise more precise genome editing tools [110]. For metabolic engineering appli-
cations, RNA scaffolds are enabling control over the relative geometric orienta-
tions of enzymes in a co‐localized pathway, which can lead to better channeling of 
volatile intermediate metabolites [111]. Therapeutic applications of in vivo RNA 
scaffolds include functionalizing natural RNA scaffolds to enable drug delivery or 
isolation of pure samples. Similar developments in the fields of DNA packaging 
and origami for drug delivery [112, 113] could offer strong synergistic opportuni-
ties for clinically applicable technologies to be implemented. More generally, the 
ability to simulate and predict the dynamics of structure‐receptor binding interac-
tions should enhance the design of such therapeutics [114].

13.5.2 Technological Advances

Moving forward, innovations in high‐throughput design, synthesis, and assaying 
functions for RNA structures will enable a greater range of applications to be 
developed. In silico design software packages are continuously improving their 
capabilities, making it possible to computationally generate increasingly compli-
cated structures [55]. In addition to the advances for in vivo synthesis and purifi-
cation of RNAs mentioned previously, developments in chip‐based synthesis 
could enable hundreds of RNA designs to be synthesized in vitro at a time 
[106, 115]. This, coupled with new structure assembly assays such as SHAPE‐Seq 
[116] and improved genetically encodable electron microscopy tags [117, 118], 
will greatly simplify the testing of more complicated structures. Developments in 
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RNA imaging [119] can be further advanced by incorporation of docking sites 
that allow RNA to be probed with oligonucleotides using methods like DNA‐
PAINT [120], leading to super‐resolution imaging in situ.

Thus, the discovery of a variety of natural RNA structures and functions, an 
ever‐increasing understanding of how such features can be designed, and an 
ability to rapidly implement and test ideas are indicators of a significant role for 
RNA scaffolds in future synthetic biology applications.

Definitions

Synthetic biology is a discipline that seeks to control biology using the princi-
ples of engineering

Nanotechnology is the manipulation of matter at the atomic, molecular, and 
supramolecular scale

RNA scaffolds are macromolecular structures or assemblies of RNA with well-
defined secondary structure motifs for spatially organizing other biomole-
cules. These are typically expressed in living cells for metabolic engineering 
purposes

Isothermal assembly is a self-assembly of structures at a constant temperature
Metabolic engineering is the production of small molecules or short peptides 

through the engineering of metabolic pathways
Aptamers are nucleic acid oligonucleotides that bind a specific small molecule 

or other ligand
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