
Oligo Miner
This repository contains the code for the OligoMiner tool.

If you are looking to use probe sequences that we have already generated for various genome
assemblies (hg19, hg38, mm9, mm10, dm3, dm6, ce6, ce11, danRer10, tair10), you can download
those on our website. If you would like to run the OligoMiner tool yourself, please see below for
instructions.

We provide this open source software without any warranty under the MIT license.

Please remember to cite our pre-print:

OligoMiner: A rapid, flexible environment for the design of genome-scale oligonucleotide in situ
hybridization probes Brian J. Beliveau, Jocelyn Y. Kishi, Guy Nir, Hiroshi M. Sasaki, Sinem K. Saka,
Son C. Nguyen, Chao-ting Wu, Peng Yin bioRxiv 171504; doi: https://doi.org/10.1101/171504

Note about operating systems

OligoMiner is a set of command-line scripts developed on Python 2.7 that can easily be executed
from a Bash Shell.

If you are using standard Linux or Mac OS X sytsems, we expect these instructions to work for you.
If you are using Windows, we recommend downloading Cygwin and running the instructions
through that environment, but unfortunately we cannot guarantee that these instructions will work
for you.

Also note that if you're on a Mac, you will need a C compiler installed (for Biopython, NUPACK,
Jellyfish, and potentially the alignment program you choose to use, e.g. Bowtie2). You should
download Xcode for this purpose.

Installing OligoMiner dependencies

First, you will need to download all dependencies, which include Python (developed on Python 2.7),
NumPy (version 1.8.2+), SciPy, and BioPython. We recommend doing this inside of a Anaconda or
Miniconda environment (see step 1 below).

You will also need a stand-alone sequence alignment tool such as Bowtie2.

If you would like to use the optional script to evaluate of your probes to adopt secondary structures,
you will need NUPACK.

If you want to use our machine learning algorithm to screen probes, you will also need the
scikit-learn (version 0.17+) package. If you want to screen probes for the presence of
high-abundance k-mers, you will need Jellyfish.

http://www.biorxiv.org/content/early/2017/08/16/171504
http://genetics.med.harvard.edu/oligopaints
https://opensource.org/licenses/MIT
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://www.cygwin.com/
https://developer.apple.com/xcode/
https://www.python.org
http://www.numpy.org/
https://www.scipy.org/
http://biopython.org/
https://www.continuum.io/downloads
https://conda.io/miniconda.html
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://nupack.org
http://scikit-learn.org/stable/install.html
http://www.genome.umd.edu/jellyfish.html

Installing Python and other required dependencies

We recommend using Anaconda to install new Python modules, as it will automatically install all
required Python dependencies in one go (see step 1). If you prefer to do it all without a virtual
environment, we also provide instructions below.

[Optional but recommended] Download the Python 2.7 version of Anaconda. This will allow you1.
to quickly and easily set up your Python environment using the conda commands below.conda
create --name probeMining numpy scipy biopython scikit-learn

 This creates a virtual Python environment called "probeMining" (you can change the name if you
want). Now, anytime you want to run Python scripts from your terminal, you can just run: source
activate probeMining

 ... which activates your environment and allows you to run this Python environment that already
has required library dependencies installed. to deactivate this environemnt, simply run: source
deactivate

If you're using Anaconda (step 1), then Python is already installed and you can skip this step.2.
Install Python. We developed this on Python 2.7 and recommend you use OligoMiner with this
version. You can find some instructions on installing Python in this PDF document on our
website.
If you're using Anaconda (step 1), then NumPy, SciPy and Biopython are already installed and3.
you can skip this step. Install Python libraries: NumPy, SciPy and Biopython: pip install numpy
versions 1.8.2+
pip install scipy
pip install biopython
pip install scikit-learn # versions 0.17+

 If you're having trouble executing these commands on a server, one problem may be that you
don't have root access. If this is the case, try adding the --user argument to the end of the pip
command to install as a local user.
You'll need a genome alignment tool to screen your oligos against your genome of interest. We4.
recommend Bowtie2. If you are using Anaconda, you can easily use bioconda to install Bowtie2.
First set up the bioconda channels: conda config --add channels r
conda config --add channels defaults
conda config --add channels conda-forge
conda config --add channels bioconda

 Next, install Bowtie2: conda install bowtie2
 After installing Bowtie2, you'll need to build a genome index. We recommend you use an
unmasked sequence to build the index. E.g. for hg38: bowtie2-build hg38.fa hg38

Recommended installation:

If you're using Anaconda (step 1), then scikit-learn is already installed and you can skip this step.1.
Install scikit-learn: pip install -U scikit-learn
 If you're having trouble executing these commands on a server, one problem may be that you
don't have root access. If this is the case, try adding the --user argument to the end of the pip
command to install as a local user. (If you're using an Anaconda environment forgot to include
scikit-learn in the original Anaconda environment creation, you can add it with conda install
scikit-learn.).
If you want to use the structureCheck.py script, you need to download and compile the2.
NUPACK source code. You will need to register your email address to receive login credentials
before downloading the source code. Once downloaded, you will need to navigate to the

https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.python.org
http://genetics.med.harvard.edu/oligopaints/sites/default/files/Oligopaints_Scripts_Manual.pdf
https://www.continuum.io/downloads
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://bioconda.github.io/
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml#the-bowtie2-build-indexer
https://www.continuum.io/downloads
http://scikit-learn.org/stable/install.html
http://nupack.org/downloads

directory where the code is located (there should be a Makefile in this directory). For example, if
the source code is in the directory /Path/To/NUPACK/nupack3.0.4, then do: cd
/Path/To/NUPACK/nupack3.0.4

 Once you're inside the NUPACK directory, compile the executables with your C compiler by
running: make
 This should create executable files for many NUPACK functionalites that can be used for
secondary structure evaluation, found in `/Path/To/NUPACK/nupack3.0.4/bin'. (See the provided
NUPACK user manual for additional information on these executables). You will need these
executables within your path for our structureCheck.py script to work. You can do this with:
export PATH=$PATH:/Path/To/NUPACK/nupack3.0.4/bin

 You will also need to set the 'NUPACKHOME' environmental variable: export NUPACKHOME =
/Path/To/NUPACK/nupack3.0.4/

 NOTE: If you don't want to re-execute these export commands every time you open a new
terminal, you will need to add the following lines to your ~/.bash_profile or ~/.bashrc files:
PATH=$PATH:/Path/To/NUPACK/nupack3.0.4/bin
export PATH

NUPACKHOME = /Path/To/NUPACK/nupack3.0.4/
export NUPACKHOME

If you want to use the kmerFilter.py script, you will need Jellyfish. As with Bowtie2, this can3.
easily be installed using bioconda: conda install jellyfish If instead you want to build Jellyfish from
source, you will need to navigate to the directory where the code is located, where there should
be a Makefile. For example, if you the source code is in directory /Path/To/Jellyfish/jellyfish-2.2.6,
then do: cd /Path/To/Jellyfish/jellyfish-2.2.6
 Once here, compile with: make
 NOTE: If you are working on a server environment without root access, you may need to instead
type: /.configure --prefix=$HOME
make
make install

 And finally, add it to your path: export PATH=$PATH:/Path/To/Jellyfish/jellyfish-2.2.6
 As in the previous step, if you don't want to have to run this command every time you open the
Terminal, then you should add the following to one of your ~/.bash_profile or ~/.bashrc files:
PATH=$PATH:/Path/To/Jellyfish/jellyfish-2.2.6
export PATH

 Now, you'll also want to build a JF file for your genome of interest, which we also recommend
using unmasked sequences for. We also recommend writing the output file as 1-bit (max k-mer
count 255, any occuring more reported as '255') and not reporting k-mers that only occur once.
E.g. for 18-mers in hg38: jellyfish count -s 3300M -m 18 -o hg38_18.jf --out-counter-len
1 -L 2 hg38.fa

Running OligoMiner locally

To make sure all of your dependencies are set up properly, below we will run you through the
pipeline using some small example datasets.

https://www.howtogeek.com/102468/a-beginners-guide-to-editing-text-files-with-vi/
http://www.genome.umd.edu/docs/JellyfishUserGuide.pdf
http://www.genome.umd.edu/jellyfish.html

Downloading the code

Once you have all necessary dependencies, you can download the scripts from our repository
(either by cloning the repository or directly downloading the files above). Be sure to download all
files in the "ExampleFiles" folder if you want to test the functionality of all the scripts with the
commands provided below.

Running scripts on the example files

To run the blockParse.py script on a .fa file, you can run the following command: python1.
blockParse.py -f 3.fa

 This produces a .fastq file (3.fastq) containing all identified probe sequences matching your
provided criteria. To see additional command line arguments available for this script, you can
run the python file with the -h argument (i.e. `python blockParse.py -h').
NGS alignment. For example, you can use Bowtie2 to align the newly generated set of candidate2.
probes by running: bowtie2 -x /path_to_hg38_index/hg38 -U 3.fastq --no-hd -t -k 100
--very-sensitive-local -S 3_u.sam

 or bowtie2 -x /path_to_hg38_index/hg38 -U 3.fastq --no-hd -t -k 2 --local -D 20 -R 3
-N 1 -L 20 -i C,4 --score-min G,1,4 -S 3.sam

 ... where "path_to_hg38_index" is replaced with the path to the bowtie2 indices for your genome
of interest. These commands produce .sam files (3_u.sam and 3.sam) containing sequence
alignment information, but require genome builds as described in the previous section. If you
are just testing your scripts to make sure they are working properly, we have already provided
the output 3_u.sam and 3.sam files in the example files directory for you to use to test
subsequent scripts.
To process the .sam file produced by sequence alignment, use the outputClean.py script: python3.
outputClean.py -u -f 3_u.sam

 or, optionally (requires sklearn for the LDA model, see above) python outputClean.py -T 42 -f
3.sam

 13 of 13 of the candidate probes should pass the first command (and 12 of 13 candidate probes
should pass the specificity filtering with the 42C LDA model in the second command). To see
additional command line arguments available for this script, you can run the python file with the
-h argument (i.e. `python outputClean.py -h').
[Optional] Now, you can use kmerFilter.py to screen your probes against high abundance4.
kmers (requires Jellyfish to be installed and in your path, and a Jellyfish dictionary, see
instructions above). python kmerFilter.py -f 3_probes.bed -m 18 -j 18 -j sp.jf -k 4
 This command uses a Jellyfish dictionary containing information about high abundance kmers in
the genome of interest to screen probes. (We have provided sp.jf as an example for you to test
the python script, which should pass all 12 probes into the file 3_probes_18_4.bed . However,
you will need to generate your own Jellyfish dictionary for your desired genome in the real case!)
To see additional command line arguments available for this script, you can run the python file
with the -h argument (i.e. `python kmerFilter.py -h').
To convert your probe set to their reverse complements, you can use the probeRC.py script:5.
python probeRC.py -f 3_probes.bed

 This creates a file, 3_probes_RC.bed containing the reverse complements of all sequences in the
original .bed file. To see additional command line arguments available for this script, you can run
the python file with the -h argument (i.e. `python probeRC.py -h').
[Optiona] You can check for secondary structures of probes by calling NUPACK using the6.

https://help.github.com/articles/cloning-a-repository/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://www.genome.umd.edu/jellyfish.html

structureCheck.py script: python structureCheck.py -f 3_probes.bed -t 0.4
 This command should pass 6 of 12 example candidate probes. Additional information can be
seen in the produced 3_probes_sC.bed file. To see additional command line arguments available
for this script, you can run the python file with the -h argument (i.e. `python probeTm.py -h').
[Optional] To generate a list of melting temperatures for a given probe set, you can use the7.
probeTm.py script: python probeTm.py
 or python probeTm.py -f 3.txt
 The first command will allow you to enter a sequence interactively to retrieve its computed
melting temperature. The second command takes a two column .txt file with the sequence in
column 2 (tab delimited) and outputs a new file (3_tm.txt) with a 3rd column of Tms.

That's all! If you made it through these all without any errors thrown about missing dependencies
or modules, you are all set to run OligoMiner on your own computer. Happy FISHing!

Notes on running OligoMiner on new genomes

You'll need to download your genome of interest in FASTA format and prepare index/dictionary
files for your NGS aligner and optionally Jellyfish. We recommend using unmasked files for
dictionary file construction and repeat-masked files as the input files for blockParse.py

Contributing

We welcome commits from researchers who wish to improve our software. Please follow the git
flow branching model. Make all changes to a topic branch off the branch dev. Merge the topic
branch into dev first (preferably using --no-ff) and ensure everything works. Code will only merged
into master for release builds. Hotfixes should be developed and tested in a separate branch off
master, and a new release should be generated immediately after the hotfix is merged.

Questions?

Please reach out to Brian with any questions about installing and running the scripts.

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
mailto:Brian.Beliveau@wyss.harvard.edu

