| Name          | Sequence                                                                     |
|---------------|------------------------------------------------------------------------------|
| phos_r2_ddC   | /5Phos/AGATCGGAAGAGCACACGTCTGAACTCCAGTCACATCTCGTATGCCGTCTTCTGCTTG/3ddC/      |
| r1_bc_full_1  | AATGATACGGCGACCACCGAGATCTACACAACGATGGACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNN   |
| r1_bc_full_2  | AATGATACGGCGACCACCGAGATCTACACACCTTGGAACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNN  |
| r1_bc_full_3  | AATGATACGGCGACCACCGAGATCTACACACGTTCCTACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNN |
| r1_bc_full_4  | AATGATACGGCGACCACCGAGATCTACACAGACTGTCACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNN |
| r1_bc_full_5  | AATGATACGGCGACCACCGAGATCTACACAGGTGTTCACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNN   |
| r1_bc_full_6  | AATGATACGGCGACCACCGAGATCTACACATCGCCTTACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNN  |
| r1_bc_full_7  | AATGATACGGCGACCACCGAGATCTACACCAACCTTCACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNN |
| r1_bc_full_8  | AATGATACGGCGACCACCGAGATCTACACCAGAGACAACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNN |
| r1_bc_full_9  | AATGATACGGCGACCACCGAGATCTACACCATGCATGACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNN   |
| r1_bc_full_10 | AATGATACGGCGACCACCGAGATCTACACCGAATACCACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNN  |
| r1_bc_full_11 | AATGATACGGCGACCACCGAGATCTACACCTAGAGGAACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNN |
| r1_bc_full_12 | AATGATACGGCGACCACCGAGATCTACACCTTCAGCTACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNN |
| r1_bc_full_13 | AATGATACGGCGACCACCGAGATCTACACGACTCAGTACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNN   |
| r1_bc_full_14 | AATGATACGGCGACCACCGAGATCTACACGCAACCTAACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNN  |
| r1_bc_full_15 | AATGATACGGCGACCACCGAGATCTACACGCTAGCATACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNN |
| r1_bc_full_16 | AATGATACGGCGACCACCGAGATCTACACGGCGAATAACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNN |
| r1_bc_full_17 | AATGATACGGCGACCACCGAGATCTACACGTACGAAGACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNN   |
| r1_bc_full_18 | AATGATACGGCGACCACCGAGATCTACACGTGAGTGAACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNN  |
| r1_bc_full_19 | AATGATACGGCGACCACCGAGATCTACACGTTGGATCACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNN |
| r1_bc_full_20 | AATGATACGGCGACCACCGAGATCTACACTAGGTAGGACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNN |
| r1_bc_full_21 | AATGATACGGCGACCACCGAGATCTACACTCCTCTTCACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNN   |
| r1_bc_full_22 | AATGATACGGCGACCACCGAGATCTACACTCTCGTCAACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNN  |
| r1_bc_full_23 | AATGATACGGCGACCACCGAGATCTACACTGAGGTCTACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNN |
| r1_bc_full_24 | AATGATACGGCGACCACCGAGATCTACACTGTGTGACACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNN |

Supplementary Table 1. Adapter and barcode sequences for BEARS.



Supplementary Figure 1. Detailed schematic of BEARS ligations and data analysis. We show a schematic (a) of the first ligation, between a brick and the 3' dideoxyC-protected adapter (3dC), resulting in the lig1 product. The lig1 product is then gel-purified, phosphorylated, and ligated to the barcoded 5e adapter, resulting in the lig2 product. We also show details of the data analysis pipeline (b).



Supplementary Figure 2. Denaturing gel and qPCR analysis of BEARS ligations. We show a denaturing PAGE gel of the first ligation reaction (a), in which 42-nt bricks are ligated to ~60 nt 3dC adapters, resulting in the lig1 product, shown near the top. The numbers 1-5 indicate different samples that were analyzed using BEARS. The second ligation product was quantified using qPCR. We typically observed sample concentrations between 100 and 1000 pM (orange, brown, grey, black), at similar levels to the positive controls (red), and substantially higher than the negative controls (blue). We tested the ligation efficiency of 10 different oligonucleotide sequences (c). Error bars indicate 1 standard deviation based on n=3 experiments.

![](_page_3_Figure_0.jpeg)

Supplementary Figure 3. We show a sample read count histogram for the 2D DNA brick molecular canvas. We observe a lognormal distribution for the majority of bricks, with a few outliers that are processed or sequenced poorly.

![](_page_4_Figure_0.jpeg)

Supplementary Figure 4. Read fraction distributions of the 2D DNA brick structures. We show histograms of the  $log_2$  of the read fraction ratios for each of the 2D shapes from Fig. 3. Gaussian curve fits are indicated in red, and the threshold is shown using a black line.

![](_page_5_Picture_0.jpeg)

Supplementary Figure 5. Low SRI values correlate with structure defects. We show structure schematics and SRI data from Figure 3, along with representative AFM images of defective structures. The break points and edges of these structures correspond to areas of low SRI.

![](_page_6_Figure_0.jpeg)

Supplementary Figure 6. GC content and free energy do not correlate with SRI for the DNA brick shapes. We show scatterplots of GC content vs. SRI and  $\Delta$ G vs. SRI for the letter B (a-b), letter E (c-d), letter A (e-f), letter R (g-h), letter S (i-j), and bear shape (k-I).

![](_page_7_Figure_0.jpeg)

![](_page_7_Figure_1.jpeg)

![](_page_8_Figure_0.jpeg)

Supplementary Figure 8. GC content and free energy do not correlate with SRI for the 3D DNA brick cuboid. We show scatterplots of GC content vs. SRI and  $\Delta$ G vs. SRI for the 3D DNA brick cuboid (a-b).

![](_page_9_Figure_0.jpeg)

Supplementary Figure 9. Magnified view of 3D origami cuboid. We show a magnified view of slices of the 3D origami cuboid from Fig. 5e. Staples are rendered according to the caDNAno design and colored based on their structure-wise relative incorporability (SRI). Gray strands did not have enough reads for accurate quantification (see Methods for details).

![](_page_10_Figure_0.jpeg)

Supplementary Figure 10. Staple GC content and free energy do not correlate with SRI. We show scatterplots of GC content vs. SRI and  $\Delta$ G vs. SRI for the 2D rectangular DNA origami (a-b), and the 3D DNA origami cuboid (c-d).