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S1. Detailed growth and toehold switch expression conditions 

Unless otherwise mentioned, cells were all grown in LB media at 37°C. Antibiotics were used 

at the following concentrations: ampicillin (50 g mL-1), kanamycin (30 g mL-1), and 

chloramphenicol (34 g mL-1).  
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For first- and second-generation library testing, switch and trigger RNAs were expressed 

from separate plasmids with ColA and ColE1 origins, respectively. A GFP with an ASV 

degradation tag with a half-life of ~110 min (Andersen et al., 1998) was used as the 

reporter. In these experimental conditions, the copy number differences in the plasmids 

expressing switch and trigger RNAs led to a 6-8 fold excess of trigger compared to switch 

molecules as determined by fluorescence measurements of the GFP reporter expressed 

separately from each plasmid (see Figure S1A). 

 

To characterize the toehold switches, chemically competent E. coli were transformed with 

the desired combination of switch and trigger plasmids, and spread onto LB/agar plates 

containing the appropriate antibiotics. For colony GFP fluorescence measurements, LB/agar 

plates were supplemented with 0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) to 

induce RNA expression. For flow cytometry measurements, LB medium containing antibiotics 

was inoculated with cells picked from individual colonies and incubated overnight with 

shaking at 37°C. Cells were then diluted 100-fold into fresh selective LB medium and 

returned to shaking at 37°C and 900 rpm in 96-well plates. For T7 RNA polymerase driven 

expression in BL21 Star DE3 and BL21 DE3, cells were induced with 0.1 mM IPTG at 0.2-0.3 

OD600 after 80 minutes of growth. Unless otherwise noted, measurements on cell cultures 

were taken 3 hours after addition of IPTG. 

S2. Detailed plasmid construction 

All DNA oligonucleotides were purchased from Integrated DNA Technologies, Inc. Double-

stranded trigger and switch DNA was produced from either single > 100-nt oligonucleotides 

amplified using universal primers (see Table S1) or using gene assembly from short < 50-nt 

oligonucleotides segmented using the gene2oligo webserver (Rouillard et al., 2004). These 

PCR products were then inserted into vector backbones using Gibson assembly with 30-bp 

overlap regions (Gibson et al., 2009). Vector backbones were PCR amplified using the 

universal backbone primers shown in Table S1 and digested prior to assembly using DpnI 

(New England Biolabs, Inc.). 

 

Backbones were generated from the T7-based expression plasmids pET15b, pCOLADuet, 

pCDFDuet and pACYCDuet (EMD Millipore). pET15b, pCOLADuet, pCDFDuet, and 
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pACYCDuet plasmids all contain a constitutively expressed lacI gene, a T7 RNA polymerase 

promoter and terminator pair, and the following respective resistance markers/replication 

origins: ampicillin/ColE1, kanamycin/ColA, spectinomycin/CDF and chloramphenicol/P15A. 

Reverse primers for the backbones were designed to bind to the region in the plasmid 

upstream of the T7 promoter. Forward primers for trigger backbones amplified from the 

beginning of the T7 terminator or after this terminator for triggers already containing a 

terminator. Forward primers for the switch backbones were designed to prime off the 5’ end 

of the desired output protein and add a 30-nt sequence containing the linker for Gibson 

assembly. Constructs were cloned inside DH5 and sequenced to ensure all toehold switch 

components were synthesized correctly.  Plasmid transformations were performed using 

established chemical transformation protocols (Inoue et al., 1990), while linear DNA 

transformations were performed using electroporation. 

S3. Flow cytometry data analysis 

Flow cytometry datasets were analyzed using custom Matlab scripts. Data were first 

screened to remove any events with non-positive forward scatter (FSC), side scatter (SSC), or 

fluorescence intensity values. The remaining events were then used to generate a two-

dimensional histogram with respect to FSC and SSC, each with bins defined on a logarithmic 

scale. The E. coli population had unimodal distributions in both FSC and SSC and thus 

provided a single peak in the two-dimensional histogram.  

 

We used the maximum histogram value in this peak to define the gating area. This was 

done by first compiling a set of all coordinates in the two-dimensional histogram that had 

values of at least 10% of the maximum value in the peak. The gate was then defined by 

identifying the subset of these coordinates that formed a contiguous, closed area that 

contained the FSC and SSC coordinates of the maximum histogram value in the peak. This 

gate was then used to screen for acceptable events during subsequent analyses of cell 

fluorescence intensities. 

 

Figure S1B shows representative GFP fluorescence histograms for cells in the toehold switch 

OFF state (expression of the switch RNA and a non-cognate trigger) and ON state 

(expression of the switch RNA and its cognate trigger). The mode fluorescence intensity 

from the histograms was used for calculations of ON/OFF fluorescence ratios. Since 
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fluorescence histograms from the cells was almost exclusively unimodal, mean, mode, and 

median fluorescence signals obtained from the cells had comparable values. We found that 

ON/OFF ratios based on the mode fluorescence levels had smaller colony-to-colony 

variations compared to those based on mean levels and yielded better correlations with 

thermodynamic parameters than median levels. In addition, mean fluorescence levels 

displayed greater sensitivity to low levels of contamination from the previous well sampled 

compared to mode and median fluorescence measures even under the most stringent 

cytometer washing conditions. In view of the above factors, we use the mode signal for all 

fluorescence levels reported in the main text and supplemental information. 

S4. Crosstalk measurements using flow cytometry 

For measurements of in vivo system crosstalk, single colonies of each of the 676 strains of 

transformed cells were measured using flow cytometry. To estimate colony-to-colony 

variations in GFP output for these strains, we measured a randomly selected subset of 18 

transformants and assayed them in sextuplicate. The relative uncertainties for these 

measurements were 12% on average, which is comparable to uncertainties obtained for flow 

cytometry experiments used for determining ON/OFF fluorescence ratios for library 

components. 

S5. Colony fluorescence imaging and image processing 

Images of fluorescence from E. coli colonies were obtained using a Typhoon FLA 9000 

biomolecular imaging system. All images were measured using the same PMT voltage, an 

imaging resolution of 0.1 mm, 473 nm laser excitation, and an LPB (>510 nm long pass) 

filter for detection of GFP. Induced cells were imaged ~18 hours after they were plated onto 

rectangular 8-well dishes and incubated at 37°C. Since IPTG exhibits low-level fluorescence 

in the same spectral region as GFP, variations in the thickness of the LB/agar in the plates 

result in variations in background fluorescence levels. In addition, the LB/agar in the plates is 

not perfectly level, which led to non-uniform background within each plate. Consequently, 

we used a plane subtraction algorithm to reduce the background fluorescence and to 

correct for variations in the flatness of LB/agar. 
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S6. In silico design and selection of toehold switches 

This section describes the initial computer-based stages of the toehold switch generation 

process, namely design specification, de novo RNA sequence design, and in silico screening 

and selection. 

S6.1. Design specification: Specification of RNA sequences and secondary 

structure 

The first stage in the design process involves definition of the toehold switch secondary 

structure, conserved sequences, and interaction domain sizes. These parameters are detailed 

in Figure S1C for both the 168-component first-generation toehold switch library (Figure 

S1Ci) and the forward-engineered systems (Figure S1Cii). Colored regions in Figure 1 and 

Figure S1C represent regions with pre-determined sequences. These regions are the RBS of 

the mRNA (AGAGGAGA), the T7 RNA polymerase transcriptional terminator (see Table S1), 

the 21-nt linker region between the hairpin module and coding sequence of the regulated 

gene (see Table S1), and a GGG leader sequence that encourages efficient transcription by 

the T7 RNA polymerase. 

S6.2. De novo RNA sequence design: NUPACK-based sequence generation 

After definition of system parameters, the NUPACK software package (Zadeh et al., 2011a) 

was used to design toehold switch sequences satisfying the specified constraints. The 

NUPACK design algorithm computes candidate RNA sequences and progressively refines 

them until their deviation from the specified design constraints falls below a specified stop 

condition. In designing toehold switches, stop conditions were imposed on three different 

RNAs: 

(1) the trigger RNA 

(2) the switch RNA 

(3) the trigger-switch complex that forms upon switch activation. 

The complete trigger transcript, including a stabilizing 5’-hairpin and transcriptional 

terminator, was considered for the design algorithm. To reduce computational load for the 

switch RNA design, only the first 50-nts following the hairpin module were simulated. This 

region encompasses the conserved 21-nt linker and the first 29-nts of the GFPmut3b-ASV 

gene. Consequently, these switch designs are optimized for regulation of GFPmut3b-ASV; 
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however, they retain their functionality when regulating other output proteins (see Section 

S10.1).  

 

The trigger-switch complex formed by the complete trigger RNA and the truncated switch 

RNA was considered for designs. The desired secondary structure for the complex was 

specified to be completely single-stranded in the bases following the b domain of the 

switch RNA. This single-stranded specification meant that the toehold switch designs were 

implicitly designed to favor lower magnitudes of the critical G∆ RBS-linker term. Free energies 

specified in Serra and Turner 1995 (Serra and Turner, 1995), a temperature of 37°C, 1.0 M 

Na+, and 0 M Mg2+ were used for the design algorithm. To preclude runs of the same 

nucleotide or pairs of nucleotides, the following sequence patterns were prevented by the 

design algorithm: AAAA, CCCC, GGGG, UUUU, KKKKKK, MMMMMM, RRRRRR, SSSSSS, 

WWWWWW, YYYYYY.  

 

It is important to note that since NUPACK optimizes by considering the defect levels over 

the ensemble of RNAs, optimal designs can differ in their predicted minimum free energy 

(MFE) secondary structure from the intended design secondary structure. In some cases, this 

ensemble optimization can lead to additional base pairs in the stem of switch RNA at its 

base or in the AUG bulge region. The latter defect occurred often in the forward-engineered 

toehold switches likely as a means to compensate for weak base pairing imposed at the top 

of the stem. In other cases, this optimization led to toehold switches with strongly negative 

∆GRBS-linker values (see Figure 3D-E), which were correlated with lower switch dynamic range. 

S6.3. In silico screening: Fast removal of unwanted designs 

The resulting toehold switch designs were then screened to ensure they had no in-frame 

stop codons that would prematurely terminate translation of the output gene and to 

remove any duplicate sequences. A pool of 672 toehold switch designs with randomized 

sequences were generated for the first-generation library. Of the resulting designs, 25 were 

found to encode stop codons in the hairpin region after the start codon. In the remaining 

systems, one duplicate design was found leaving 646 unique toehold switch designs in the 

pool. 
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S6.4. In silico selection: Identification of designs with minimal crosstalk 

The screened toehold switch designs were then analyzed for their orthogonality. We began 

this process by first computing the pairwise interactions between the trigger RNA and 

switch RNA sequences. Simulations were performed with a local implementation of NUPACK 

using the complexes and concentrations functions. The NUPACK functions were run 

with a specified temperature of 37°C, 1.0 M Na+, and 0 M Mg2+ using Serra and Turner 1995 

(Serra and Turner, 1995) free energy parameters, and assumed strand concentrations of 100 

nM. The output of these functions provided the free energies of the individual RNA strands 

and the bimolecular trigger-switch complex, and the predicted concentrations and minimum 

free energy secondary structures of each of the three species in solution. In the case of the 

initial 144-component orthogonal toehold switch library, a total of 646 possible designs 

were considered, requiring 417,316 different pairwise interactions to be simulated. To reduce 

computational load, the switch RNA was truncated at the three bases following the hairpin 

module. Two different scoring terms from the large dataset of pairwise interactions were 

used to assess the orthogonality of groups of toehold switches. 

S6.4.1. The stem integrity score 

The stem integrity score reflects perturbations to the ideal stem region secondary structure 

caused by interactions of the switch RNA with trigger RNAs. It is calculated from the MFE 

structure of the trigger-switch complex computed by NUPACK. For instance, the stem of the 

initial library of switch RNAs has the following prescribed structure in dot-bracket notation, 

where “.” specifies unpaired bases and “(“ and “)” are used to denoted paired bases:  
(((((((((...((((((...........))))))...))))))))) 

If the corresponding bases in trigger-switch complex have the identical secondary structure, 

then the resulting stem integrity score is 0. However, for cognate trigger-switch interactions, 

stem unwinding by the trigger RNA exposes bases downstream of the RBS. This interaction 

can lead to a secondary structure of the following form:  
((((((((((((((((((............................. 

A position-by-position comparison is made between the ideal and predicted stem secondary 

structures and the total number of bases with changes is computed, in this case yielding 18 

for the string of 47 characters. The number of modified bases is normalized by the length of 

the ideal stem structure leading to a stem integrity score of 0.38. Consequently, higher stem 

integrity scores signify larger perturbations to the stem structure and in turn the degree of 

de-repression caused by the trigger-switch interaction. Although there are many other 
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potential ways of computing this stem weakening effect, for instance by using base pairing 

probabilities tables, we found this metric was simple to implement, fast to compute, and 

captured the critical features of potential crosstalk interactions.  

S6.4.2. Scoring via the predicted trigger-switch complex concentration 

The second scoring term we used for computing orthogonality was the predicted 

concentration of the trigger-switch complex. Simulated yields of the trigger-switch complex 

for cognate RNA interactions were uniformly 100% for the toehold switch systems, while 

non-cognate interactions had complexes with yields ranging between 0 to 100%. The 

majority of these strong non-cognate interactions arose from trigger binding to regions of 

the switch toehold domain and/or the downstream linker, and thus high yields of a non-

cognate trigger-switch complex do not necessarily suggest a high level of crosstalk. As a 

result, we used the concentration of the trigger-switch complex as a more stringent metric 

for orthogonality after initial screening via stem integrity. In particular, this trigger-switch 

concentration metric is likely important for multiplexed operation of toehold switches in vivo 

since unwanted non-cognate interactions could interfere with cognate trigger-switch 

interactions. 

S6.4.3. A Monte Carlo algorithm to select subsets of orthogonal switches 

The scoring terms generated from pairwise interaction simulations were then used to 

generate libraries of orthogonal toehold switches using a Monte Carlo selection algorithm. 

The crosstalk between various toehold switches was determined using either one or a 

combination of the scoring terms discussed above, except scoring terms defined for cognate 

RNA interactions were set to zero. A target orthogonal library size M was defined for the 

complete set of N designs. To begin the algorithm, a random set of M designs was then 

selected and the resulting library assessed for orthogonality through a global orthogonality 

metric. This global orthogonality metric was defined either as the sum of the scoring terms 

for all pairwise interactions of the M selected toehold switches or as the maximum scoring 

term from the same set of all M2 pairwise interactions. 

 

After evaluation of global orthogonality, a random member of the M system library was 

selected for mutation and replaced sequentially with 10 (or M - N if 10 > N - M) different 

designs not present in the set of M and the global orthogonality metric calculated for the 

mutated library. From the resulting set of 11 libraries (including the original library), the one 

with the lowest global orthogonality score was passed into the next iteration of the Monte 
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Carlo algorithm whereupon another library slot was mutated. This selection process was 

repeated for a total of 10,000 iterations to return a set of M orthogonal toehold switches. In 

addition, the full algorithm was run 10 times, with the requisite 10,000 optimization rounds, 

but with different random initial libraries of M components to increase the probability that a 

true optimum combination of designs was selected.  

S6.4.4. Selection of 144 orthogonal switches for first-generation library 

Figure S1D demonstrates the outcome of this Monte Carlo selection algorithm when it was 

applied to 646 candidate designs to generate the library of 144 orthogonal toehold 

switches. These switches were selected using the stem integrity scoring function and global 

orthogonality was assessed from the sum of all pairwise interactions in the subset. Based on 

random selection of 144 components, the average global orthogonality metric for the library 

is 474.7 (Figure S1Di). In contrast, the Monte Carlo selection algorithm yielded a global 

orthogonality metric of 6.8 (Figure S1Dii), an improvement of nearly a factor of 70 compared 

to random selection. In Figure S1Dii, the 144 orthogonal members of the library are given 

indices 1 to 144 in the matrix of stem integrity scores and the remaining components are 

ordered in terms of increasing net crosstalk levels for indices greater than 144. The square 

defined by the (144,144) coordinate and the graph axes contains many fewer white pixels in 

Figure S1Dii compared to the corresponding square in Figure S1Di demonstrating the 

effectiveness of the algorithm at eliminating crosstalk interactions.  

S6.4.5. Selection of 26 orthogonal switches for the in vivo crosstalk assay 

The subset of 26 in vivo validated first-generation toehold switches assayed for 

orthogonality was also selected using the Monte Carlo algorithm. This subset was compiled 

from the top 35 switches identified from the initial orthogonal library of 144. The 

concentration of the trigger-switch complex was used as the scoring function for selection 

and the maximum value of the scoring function from the set of pairwise interactions was 

used for the global orthogonality metric. 

S7. Design of positive controls for ON state expression 

During initial testing of the toehold switches, we found that many of the highest activity 

switches provided GFP expression levels that exceeded that of a standard positive control 

GFP mRNA with the same 8-nt RBS sequence. This initial positive control mRNA had the 

sequence: 
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GGGACAGAACAATAGAACAAGAACAGAGGAGATATACC, 

where the RBS is marked in bold. In the absence of the downstream mRNA, this sequence 

was designed to have zero secondary structure.  

 

In view of this effect, we chose to specifically design new positive controls that 

approximated the secondary structure of the activated trigger-switch complex and encoded 

a protein using identical codons as the toehold switch in its ON state (Figure S1E). We 

decided to avoid direct recapitulations of the trigger-switch complex in which the complete 

trigger sequence is inserted upstream of the switch sequence. Encoding both trigger and 

switch in a single strand of RNA in this way would result in a transcript with a 30-bp hairpin 

stem with strong potential for rho-independent terminator activity. Instead, we employed a 

dummy hairpin with the same secondary structure as the hairpin of the corresponding 

switch, including a 12-nt toehold. This dummy hairpin was inserted immediately upstream of 

the loop region of a given switch and its toehold was designed not to interact with any of 

the downstream bases. The resulting positive control mRNAs thus retained the 5’ hairpin 

stabilizing effects, if any, of the repressed switch RNAs; encoded a reporter protein using 

identical codons; and would exhibit similar transcriptional efficiency as the corresponding 

switch RNA. These positive control constructs exhibited similar levels of expression as their 

toehold switch counterparts in their activated state suggesting approximately complete 

activation of switches by the trigger RNAs (Figure 1C-D). The RNA sequences of the positive 

controls are provided in Table S1. 

S8. Comparison of toehold switches and engineered riboregulators 

We measured the performance of the engineered riboregulators reported by Isaacs et al. 

(Isaacs et al., 2004) in identical experimental conditions as the toehold switches. In these 

experiments, the taRNA and crRNA transcripts were both expressed using T7 RNA 

polymerase with the same vector backbones used for the toehold switches. The crRNA 

module was inserted upstream of the GFPmut3b-ASV reporter. Experiments were also 

conducted in BL21 Star DE3 with 0.1 mM IPTG induction and flow cytometry measurements 

were taken 3 hours after induction. Figure S1F presents the ON/OFF GFP fluorescence values 

obtained from crRNA10 and crRNA12 engineered riboregulators. Both systems provide 

dynamic range in the 10- to 15-fold range and displayed OFF state fluorescence that was 

similar to the toehold switches. Thus the main cause of the relatively lower dynamic range 
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of the engineered riboregulators is their reduced ON state protein output. For comparison, 

Figure S1F also provides the mean ON/OFF GFP fluorescence measured for the two libraries 

of toehold switches. The first-generation switches provide 3.4-fold increase in typical 

dynamic range compared to the older system, while the forward-engineered switches 

provide 33-fold improvement on average. 

S9. Sequence dependence of first-generation switch performance 

The ON/OFF ratios of the toehold switches exhibit a strong dependence on the sequences 

at the top and bottom of the stem of the switch RNA (Figure S1Gi). Prior to delving into 

these sequence-dependent effects, we hypothesized that the strength of the base pairing at 

the bottom of the stem in the switch RNA would modulate its repression strength, as these 

base pairs are essential to sequestering the start codon. Furthermore, the bases at both the 

top and bottom of the stem also would also affect the secondary structure of the RBS and 

mRNA region once the switch is activated and thereby influence translational efficiency 

(Kudla et al., 2009). 

 

Analysis of the top and bottom three base pairs in the stem of the switch RNA revealed 

significant variations in the ON/OFF ratio of the devices as a function of the G-C base pair 

content in these regions. Figure S1Gii displays the average ON/OFF fluorescence obtained 

for all 16 possible permutations of G-C content in the two stem regions, as well as the 

ON/OFF values obtained for each toehold switch that satisfied the specified G-C conditions. 

Based on the size of the library and secondary structure constraints imposed during in silico 

design, a number of G-C permutations had only one or two representative toehold switches. 

As a result, it is difficult to make definitive statements regarding switch performance under 

these G-C conditions. However, we can conclude toehold switches containing zero and two 

G-C base pairs at the top and bottom regions of the stem, respectively, displayed an 

average ON/OFF fluorescence ratio of 154, over three times higher than the next highest 

permutation. Mean ON/OFF levels also tended to decrease as G-C combinations deviated 

further from this optimum combination. 

S10. Toehold switch performance in different contexts 

To assess their behavior in different contexts, we investigated the performance of the 

toehold switches in regulating new proteins, in different strains of E. coli, and using 
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transcription from the endogenous E. coli RNA polymerase. The toehold switches preserved 

their regulatory capacity in all these experiments. 

S10.1. Toehold switches successfully regulate different output proteins 

We performed experiments regulating proteins other than the GFPmut3b-ASV reporter used 

for most of the experiments in the main text. The new output proteins were superfolder GFP 

(sfGFP) (Pedelacq et al., 2006), venus, cerulean, and mCherry, which provided four different 

emission wavelengths for facile characterization via flow cytometry. A degradation tag was 

not added to the four proteins. To construct plasmids with these new reporters and enable 

future multiplexing, we used pACYCDuet (P15A origin) as the backbone for these systems. 

This enabled existing GFPmut3b-ASV toehold switches based on pCOLADuet (ColA origin) to 

be co-expressed with the new reporters in the same cell if desired. 

 

New reporter plasmids were produced using Gibson assembly with the reporter gene 

inserted after the switch hairpin module and before the T7 RNA polymerase terminator. 

Since the switch sequences were optimized for regulation of GFPmut3b, we attempted to 

minimize disruption to the regulator by preserving the sequence of the first 30-nts 

immediately following the hairpin module. This 30-nt region contains the 21-nt linker and 

the first three codons of GFPmut3b. Downstream of this region, the complete sequence of 

each reporter gene was preserved. Three different toehold switches were used for testing 

the different reporters. Of these switches, two were high-performance switches (numbers 1 

and 3) from the first-generation 144-component orthogonal library and the third was a loop 

variant switch that featured a 27-nt loop and was derived from toehold switch number 80 

(see Section S12.1 and Table S1). 

 

Figure S1H displays the ON/OFF fluorescence ratios obtained for the set of 12 different 

switches. Flow cytometry was performed on cells after three hours of induction with IPTG. 

All systems provide greater than 10-fold activation upon expression of the trigger RNA; 

however, their ON/OFF levels are not as high as those observed for regulation of 

GFPmut3b-ASV. We attribute much of this lowered dynamic range to the properties of the 

reporters themselves.  
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S10.1.1. Effects of reporter sequence and fluorescence on switch dynamic range 

In control expression experiments, GFPmut3b-ASV provided much stronger fluorescence 

than all four of the new reporters relative to the background fluorescence levels measured 

for induced cells not expressing any reporters. Since our ON/OFF metric does not subtract 

this background fluorescence level from the OFF state nor the ON state fluorescence, the 

relatively higher background fluorescence for these reporters leads to a decrease in reporter 

ON/OFF ratio.  

 

Differences in the secondary structure of the switch RNAs caused by the new downstream 

gene could also have an effect on the output of the switches. Although we found that the 

∆GRBS-linker term was the best descriptor for switch output, other mRNA secondary structure 

related terms, in particular G∆ RBS-GFP which considers a region that spans 29-nt into 

GFPmut3b, also displayed a significant correlation with switch performance for several 

subsets in the first-generation library (see Section S13 and Figure S2D). Finally, differences in 

the relative copy numbers of the P15A switch plasmid and ColE1 trigger plasmid may have 

caused some changes in the dynamic range with the new reporters. Experiments measuring 

GFPmut3b-ASV expressed from either plasmid indicated a 5-7 fold excess of trigger plasmid 

copy number compared to the switch plasmid, which was slightly lower than the 6-8 fold 

difference observed for the ColE1/ColA combination (Figure S1A).  

S10.2. Toehold switches retain their activity in non-RNase-deficient E. coli 

The BL21 Star DE3 strain used for most of the toehold switch experiments contains a 

truncated form of RNase E that lacks the portion of the native enzyme responsible for 

mRNA degradation. We measured the performance of several forward-engineered toehold 

switches in BL21 DE3, a relative of BL21 Star DE3 with the fully functional wild-type RNase E. 

Figure S2Ci shows the ON/OFF GFP fluorescence levels obtained for five different toehold 

switches measured in both strains 3 hours after induction with IPTG. The dynamic range for 

the switches is similar in both strains, which indicates that RNase-deficient conditions are 

not essential for toehold switch activity. 

S10.3. Toehold switches exhibit >100-fold dynamic range when 

transcribed using the endogenous E. coli RNA polymerase 

We also investigated the performance of the switches upon transcription using the 

endogenous E. coli RNA polymerase, as opposed to the T7 RNA polymerase used for earlier 
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experiments.  We employed the strong phage-derived PN25 constitutive E. coli promoter 

(Brunner and Bujard, 1987) for these experiments and used it to express both trigger and 

switch RNAs. We made a few modifications to the toehold switch components to adjust for 

expression from the endogenous polymerase. Transcription of the trigger strand was 

terminated using the his [min] (S) terminator (Cambray et al., 2013), and a hairpin was 

added to the 5’ end of the switch RNA in an effort to increase its stability (Carrier and 

Keasling, 1999) and insulate it from any earlier bases transcribed from the promoter (see 

Table S3 for RNA sequences). Using these updated designs, we characterized a pair of 

forward-engineered toehold switches in four different E. coli strains: BL21 Star DE3, BL21 

DE3, DH5  and MG1655Pro. ・  

 

Overnight cultures of cells transformed with different combinations of the trigger and switch 

strands were diluted 100-fold into fresh media. The cells were left shaking over 4 hours at 

37°C and then characterized using flow cytometry. The ON/OFF GFP fluorescence levels 

from these experiments are shown in Figure S2Cii. Both forward-engineered switches 

provide at least 100-fold activation in all four E. coli strains. We found that the dynamic 

range for the toehold switches was lower than that observed using T7 RNA polymerase-

based transcription. While some of this effect could be due to the different polymerase, we 

found that growth of cells was slowed significantly for activated cells when using the strong 

PN25 constitutive promoter. In contrast, growth rates were normal when a switch was co-

expressed with a non-cognate trigger. This difference in growth rates likely decreased the 

rate of GFP production for the ON state cells and also led to relatively greater leakage of 

GFP from OFF state cells expressing comparatively larger amounts of switch RNAs. As a 

result, these two effects led to decreases in the observed dynamic range for the switches. 

S11. Identification of orthogonal sets of toehold switches 

Sets of orthogonal toehold switches were determined as a function threshold crosstalk level. 

Crosstalk levels were first calculated from flow cytometry data by taking the mode GFP 

fluorescence intensity of a trigger-switch combination and dividing it by the mode GFP 

fluorescence intensity obtained for the same switch with its cognate trigger RNA. The 

resulting crosstalk matrix was then converted into a scoring matrix S defined by the 

specified threshold crosstalk level ߜ as: 

 ௜ܵ௝ ൌ ቊ
0,				if	ܥ௜௝ ൏ ݅	if	or	ߜ ൌ ݆
1,				if	ܥ௜௝ ൒ 																			ߜ

  (1) 
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We then input this scoring matrix into the Monte Carlo selection algorithm described in 

Section S6.4.3. Since this algorithm was designed to select optimal orthogonal subsets of a 

specified size M using the scoring matrix, we progressively lowered the value of M until the 

algorithm returned a subset of switches for which all the corresponding elements in S were 

zero. Hence with this process, we were able to identify sets of toehold switches that all had 

crosstalk levels below ߜ  across the entire set. Table S2 provides a conversion table to 

convert the orthogonal index used in Figure 2 to a toehold switch number. Table S2 lists the 

elements in the orthogonal toehold switch sets for multiple threshold crosstalk levels.  

S12. Systematic studies of toehold switch design parameters 

S12.1. Effects of switch RNA loop size 

After observing increased activation for toehold switches having weak base pairs at the top 

of their stems (Figure S1G), we undertook a study of toehold switch behavior as a function 

of the size of the loop in the hairpin module. Previous studies have found that A/U rich 

regions in front of the RBS can enhance the rate of translation (Vimberg et al., 2007). 

Furthermore, footprinting studies of prokaryotic ribosome-mRNA complexes have shown 

that the 30S subunit can protect bases up to 35-nts upstream of the start codon 

(Huttenhofer and Noller, 1994). These sequence-specific and steric factors suggest that it is 

possible to tune the ON state expression of the toehold switches simply by engineering the 

so-called pre-RBS sequence between the trigger binding site and the RBS of the switch RNA 

(Figure S2Ai). We found the least perturbative approach to studying this effect was by 

increasing the size of switch RNA loop, specifically by adding bases in front of the RBS 

domain. This enabled us to study a series of loop-engineered toehold switch variants 

activated by the same trigger RNA and maintain a constant distance between the RBS and 

the start codon. 

S12.1.1. Design of loop-variant switches 

We first selected a toehold switch from the library that exhibited medium range activation, 

as this would enable us to probe changes in switch dynamic range without pushing the 

limits of our characterization methods. The particular system was toehold switch number 80 

from the first-generation library, which had an ON/OFF fluorescence of 19 ± 4 and an A-U 

base pair at the top of its stem.  Next we used NUPACK to design a number of 27-nt-long 

candidate loops, each candidate containing the same 11-nts at the 3’ end. These 11-nts 
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were taken from the original loop sequence of switch number 80. We then calculated the 

ensemble defect of the resulting hairpin modules as nucleotides were removed from the 5’ 

end of the loop. We selected the 27-nt domain that displayed the optimal overall ensemble 

defect from the set of loop-variant hairpins, and constructed a series of switches with loops 

of 27-, 24-, 21-, 18-, 15-, 12-, and 9-nts, with the loop sequence of shorter loops defined by 

removing 3-nts from the 5’ end of the next shortest loop (see Table S1 for RNA sequences). 

Since the loop sequence was designed to have low internal binding, it generally has 50% or 

more A sequence content (the one exception is the 9-nt loop) and could provide 

translational enhancement via its high A/U content (Vimberg et al., 2007). 

S12.1.2. Behavior of loop-variant switches 

The loop-engineered toehold switches were evaluated using flow cytometry and yielded the 

ON and OFF state fluorescence levels shown in S2Aii. Increasing loop size led to dramatic 

increases in the ON state GFP fluorescence with the 27-nt loop displaying a 45-fold increase 

in fluorescence compared to the original 11-nt loop system. The loop size effect appears to 

be nearing saturation at 27-nts, this corresponds to a pre-RBS region beginning 33-nts 

upstream of the start codon and roughly agrees with the observed 30S subunit footprint on 

mRNA (Huttenhofer and Noller, 1994). 

 

Nevertheless, increasing loop sizes had a detrimental effect on system OFF state. 21- and 

27-nt loops exhibited ~5-fold increase in fluorescence leakage and fluorescence histograms 

for the 27-nt system in particular showed a broader distribution of intensities. We attribute 

this effect to two factors: the increase in entropy caused by the longer loop may decrease 

the probability of proper hairpin module folding, thereby reducing repression; and the 

longer single-stranded region nearby the RBS may encourage stable docking by the 

ribosome, which increases background translation. The combined effects of loop size on the 

ON and OFF state fluorescence yielded optimum ON/OFF levels for loops 15- to 18-nts. 

S12.1.3. Fitting of experimental ON state data 

To facilitate modeling and design of future toehold switches, we used a sigmoidal function 

to fit the measurements of the loop-engineered toehold switch ON state fluorescence. A 

sigmoid was used for fitting since we expected that translational enhancement achieved by 

increasing the length of the switch loop should eventually saturate for sufficiently large 

loops. The sigmoid function is given by the following function: 
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 logଵ଴ܱܰሺܮሻ ൌ 	
ఉ

ଵାୣ୶୮ሾି఑ሺ௅ି௅బሻሿ	
 (2) 

where ܱܰ is the ON state mode fluorescence, ܮ is loop size of the switch RNA, and ߚ = 

 ଴ = 9.95 are the fitting parameters. The resulting fit is shown as theܮ and ,0.44 = ߢ ,4.88

black curve in Figure S2Aii. 

S12.2. Effects of trigger RNA length and binding site 

We carried out studies of toehold switch behavior as a function of the length of the trigger 

RNA and the region over which it bound to the switch RNA. The sequences of the switch 

and set of trigger RNAs used for these experiments are included in Table S1. The switch 

RNA had bulges in its stem at locations 9-nts and 14-nts above the stem base, in contrast 

to the standard first-generation toehold switches with bulges at positions 10 to 12, 

corresponding to the start codon. Although the findings described in this section should be 

understood to apply only to this particular toehold switch, they provide useful information 

for understanding switch behavior and could aid in the design of future riboregulator 

systems. 

S12.2.1. Toehold switch ON/OFF level increases with toehold length 

Systematic measurements of ON/OFF GFP fluorescence for the toehold switch as a function 

of the length of the toehold domain were carried out. Experiments were performed using a 

series of triggers programmed to bind starting at different positions along the toehold 

domain of the switch (Figure S2Aiii). While the toehold-binding 3’ end of the triggers varied, 

the 5’ bases were left constant and designed to unwind up to the top of the switch RNA 

stem. As shown in Figure S2Aiv, systems with toehold lengths of -2-nts (i.e. unwinding of 

the top 16 base pairs of the 18-nt stem) to 6-nts demonstrated little activation of protein 

translation. The transition between a 6- and 8-nt toehold leads to a strong increase protein 

expression and ON/OFF fluorescence continues to increase strongly up to the complete 12-

nt toehold domain.  

S12.2.2. Partial unwinding of switch RNA stem by the trigger can increase ON/OFF level 

A similar set of trigger RNAs was used to probe the effects of the stem unwinding length 

on the output of the toehold switch as illustrated in Figure S2Av. For these experiments, the 

3’ toehold binding end of the trigger was held constant, corresponding to a toehold length 

of 12. However, the 5’ end was varied to unwind different numbers of bases from the base 

pairs of the switch RNA stem. Very little system leakage is observed when only the bottom 
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4- to 8-nts of the stem are unwound as shown in Figure S2Avi. (Note this behavior is 

drastically different for toehold switch number 1 as described in Section S14.1.) Between 8- 

to 14-nts, a ~50-fold increase in activation is observed as repression of the start codon 

region is relieved. Maximum ON/OFF fluorescence ratios are observed for triggers that 

unwind 14- to 16-nts of the stem and decrease by ~40% for the complete 18-nt branch 

migration process. We posit this optimum trigger length is related to the switch RNA loop 

size effects described in Section S12.1. The 4- to 2-nts in the stem that remain unwound for 

these shortened triggers are likely to breath open spontaneously at 37°C and thus yield 

similar effects to those observed with switches having increased loop sizes. 

S13. Thermodynamic analysis of toehold switch performance 

In order to develop an understanding of the important thermodynamic parameters 

governing toehold switch performance, we used NUPACK to rapidly evaluate 48 

thermodynamic parameters described in detail in Table S3. These parameters were divided 

into six general categories: 

 

1. Free energies of individual RNAs: 

These terms are potentially useful for determining the strength of repression for the 

switch RNA and for evaluating the single-strandedness for the trigger RNA binding 

region and the activated trigger-switch complex. 

2. Deviations from ideal secondary structures: 

These parameters are calculated from the difference between the free energy of the 

RNA sequence in its predicted secondary structure compared to its free energy in its 

ideal, programmed secondary structure. These parameters therefore reflect the 

deviation of the actual RNA structure from its intended state.  

3. Net reaction free energies: 

These terms reflect energy changes that occur upon binding for different toehold 

switch components. For instance, the free energy of binding for the toehold domain 

to its reverse complement was calculated. In addition, the net free energy change of 

trigger-switch binding was also calculated for this category. 

4. RBS/mRNA secondary structure: 

These parameters take into consideration the secondary structure of the RBS and 

mRNA coding regions for the toehold switch in its activated state. More negative 
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free energies imply stronger secondary structures, which are well known impediments 

to efficient translation (Bentele et al., 2013; Kudla et al., 2009). 

5. Stability of top of toehold switch stem region: 

These parameters are focused on the free energy of different sub-sections of the top 

of the toehold switch stem. They provide a means of converting the heuristic design 

rules used for the forward-engineered switches into a quantitative metric that can be 

used for modeling. 

6. Stability of bottom of toehold switch stem region:  

These terms are the counterparts of the previous category but focus on bases at the 

bottom of switch stem region. 

 

Each of these parameters returns an output measured in units of free energy (kcal mol-1), 

simplifying regressions over multiple parameters, unlike other potentially useful metrics such 

as GC content or ensemble defect levels. The 48 thermodynamic parameters were calculated 

for all members of the 168-component first-generation library and the 13 forward-

engineered switches. 

 

Following the treatment by Salis et al (Salis et al., 2009), we screened these thermodynamic 

parameters using the relation p ∝ exp(-k G), where p is the amount of expressed protein ∆
and k is a fitting parameter. ON/OFF ratios as opposed to fluorescence output in the ON 

and OFF states alone were used for quantitative analysis since fluorescence OFF levels varied 

relatively little over the library compared to ON levels, leaving ON/OFF ratios essentially a 

measure of ON state fluorescence. A custom Matlab script was used to evaluate linear 

regressions between log10(ON/OFF GFP fluorescence) and each of the thermodynamic 

parameters. Although strong correlations were not observed for the first-generation switch 

library when analyzed as a whole, significant correlations began to emerge as we began to 

analyze subsets of the library that satisfied different sequence criteria. In particular, we 

found that base pair composition near the top of the switch RNA stem provided a useful 

means through which to categorize different classes of switches. We found that 

thermodynamic terms produced using Mathews et al., 1999 (Mathews et al., 1999) energy 

parameters produced stronger correlations than those returned using Serra and Turner, 

1995 (Serra and Turner, 1995). Thus the former set of energy parameters were used for 

thermodynamic analyses in this study. 
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Figure S2D provides a map of the coefficients of determination R2 obtained from linear 

regressions of single thermodynamic parameters versus toehold switch ON/OFF 

performance. Each column in the map was generated from subsets of the first-generation 

library that satisfied base pairing identities at the top of their stems specified above each 

column. Weak A-U base pairs are denoted “W”, while strong G-C base pairs are denoted “S”. 

Inspection of the R2 map reveals that the RBS/mRNA secondary structure terms constitute 

the category of parameters with the strongest overall correlation with the observed toehold 

behavior. Correlations are particularly strong for those subsets in which there is a weak base 

pair at the top of the stem, with G∆ RBS-linker consistently providing better R2 values than the 

rest of the RBS/mRNA secondary structure terms. 

 

In a few cases, some correlation is observed with stem stability terms, for instance G stem ∆
bot. 12 for the WSS subset. Also, G∆ RBS-GFP provides a very high R2 value for the SSS subset. 

However, due to the limited size of both subsets (11 members each), it is difficult to draw 

strong conclusions regarding these effects. Occasional hot spots in the R2 map are also 

observed for G terms linked to the RNA∆ -RNA complex, in particular Dev. G complex and ∆
Dev. G min. complex. These terms are affected by the secondary structure of the ∆
RBS/mRNA region, which suggests that these correlations are another manifestation of the 

RBS/mRNA translational efficiency effects generally better described by G∆ RBS-linker. 

 

S14. Design rationale and selection of toehold switch mRNA sensors 

The toehold switch mRNA sensors are all derived from toehold switch number 1. In this 

section, we will describe the properties of toehold switch number 1 that facilitated its use as 

a system for detecting active mRNAs, and describe the rationale and specifics behind the 

mRNA sensor design. We will also detail the selection process used to identify optimal 

binding sites for the mRNA sensors. 

S14.1. Properties of toehold switch number 1 

Out of the initial library of 168 systems, toehold switch number 1 provided the highest 

observed ON/OFF GFP fluorescence ratio at 290 ± 20. The stem of its switch RNA contains 

an additional base pair at its base predicted by MFE calculations. This base pair forms 

between the U at the 3’ end of its intended toehold that binds to the first A at the 5’ end of 

the linker. This additional base pair likely compensates for the unusually low GC content of 
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the stem, which places the switch RNA in the 96th percentile in terms of low stem GC 

content out of the 168 switches in the first-generation library. Of the six G-C base pairs in 

this stem, half are found in the bottom five base pairs (Figure S3Ai). Consequently, 

disruption of these five base pairs leaves a weak stem containing 11 base pairs of which 

only three were G-C bonds. 

S14.1.1. Toehold switch number 1 exhibits extreme sensitivity to truncated triggers 

While studying toehold switch number 1, we unexpectedly discovered that a truncated 

trigger RNA containing only the latter 15-nts of the trigger sequence (i.e. the 3’ half of the 

30-nt trigger) provided an extremely high ON/OFF ratio exceeding 1000, despite the MFE-

predicted 11-nt toehold of the switch RNA. We proceeded to investigate this phenomenon 

in greater detail, probing the switch response with trigger RNAs 9-, 10-, 11-, 12-, 13-, 14-, 

15-, 16-, 17-, 18-, 19-, 20-, 21-, 24-, and 27-nts in length, each truncated by removing bases 

from the 5’ end of the base trigger (Figure S3Ai; see Table S4 for sequences). Figure S3Aii 

presents the ON/OFF fluorescence obtained for each of these triggers as a function of the 

intended number of base pairs of the switch RNA unwound and the length of the trigger 

programmed for binding to the switch. Between two and five base pairs unwound 

(corresponding to 13- and 16-nt trigger RNAs), there is striking change in the ON/OFF ratio, 

which increases from 3.1 ± 0.5 to 1900 ± 200. NUPACK simulations of the trigger-switch 

complexes for each of these situations are shown in Figure S3Aiii-iv and suggest a potential 

explanation for this effect. The 13-nt trigger RNA shown in Figure S3Aiii binds to the 11-nt 

toehold and displaces one stem base pair, but it is not capable of unwinding the second 

base pair of the stem. In contrast, the 16-nt trigger RNA in Figure S3Aiv unwinds one more 

base than expected as a result of RNA refolding induced by interaction between newly 

exposed bases and the downstream linker. The remaining 10 intact base pairs in the stem 

have 7 A-U bonds, which are ostensibly weak enough to be disrupted by the ribosome 

and/or stem breathing. 

S14.1.2. Correlation between switch number 1 output and ∆GRBS-linker 

Since uncovering the importance of G∆ RBS-linker, we have also examined the behavior of 

toehold switch number 1 with respect to this thermodynamic parameter. We calculated 

∆GRBS-linker by evaluating the free energy of a subsequence of the switch RNA starting 

immediately after the expected binding site of the trigger through to the last base of the 

21-nt linker. Figure S3Bi presents the relationship between toehold switch ON/OFF ratio as 

function of G∆ RBS-linker. The resulting linear regression has an R2 = 0.878, but does not 
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perform well in predicting the behavior of the highest dynamic range triggers with 

corresponding free energies above -15 kcal mol-1 (marked by a red box in Figure S3Bi).  

S14.1.3. Explaining switch number 1 behavior using G∆ RBS-linker
 and translational enhancement 

effects 

To better describe these outliers, we posited that translational enhancement effects studied 

for the loop-engineered switches (see Section S12.1) could also play in behavior of switch 

number 1. If translation is occurring in a switch whose trigger only partially unwinds its 

stem, it follows that base pairs in switch RNA downstream of the RBS are broken by the 

active ribosome (Figure S3C). Consequently, bases upstream of the RBS are also unpaired 

and can contribute to enhancing translational output. We derived an effective ON/OFF GFP 

fluorescence level that compensated for these translational enhancement effects using the 

following equation: 

 Effective	ON/OFF	 ൌ
ON/OFF

ைேሺ௅ሻ
 (3) 

with ܱܰሺܮሻ calculated using equation (2) and the fitting parameters provided in Section 

S12.1.3. The values of ܮ for equation (2) were defined as the length of the subsequence of 

the switch RNA starting immediately after the intended binding site of the trigger through 

to the end of the RBS. The resulting effective ON/OFF GFP fluorescence, normalized by 

dividing the terms by the lowest effective ON/OFF value, is plotted against G∆ RBS-linker in 

Figure S3Bii. The effective ON/OFF values yield a significantly improved correlation with R2 = 

0.962. This result indicates that while G∆ RBS-linker is useful for describing the probability of 

translation as it corresponds to the energy required for the ribosome to begin translation, 

additional terms that describe the local environment of the ribosome when it docks must 

also be considered to place limits on the maximum level of expression should translation 

occur. 

S14.2. Toehold switch mRNA sensor design parameters 

The capacity for toehold switch number 1 to activate strongly after unwinding only the 

bottom five base pairs of its stem made it an attractive system for detecting mRNAs with 

strong secondary structure as described in the main text. We adapted toehold switch 

number 1 to detecting mRNAs as shown in Figure S3D. To retain much of the high ON state 

expression from the system, the top 12-nts of the switch RNA number 1 stem were 

preserved. The loop of the hairpin module was increased from 11- to 18-nts to enhance ON 

state signal. To facilitate binding to mRNA regions with potentially high secondary structure, 
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we increased the toehold domain of the switch from 12-nts to 24- or 30-nts depending on 

the specific mRNA sensor. The bottom 6 base pairs of the sensor stem were then 

programmed to be unwound upon trigger mRNA binding. Consequently, the length of the 

trigger mRNA bound to by the sensor was 30- to 36-nts depending on the toehold length. 

 

Inspired by the mechanism shown in Figure S3Aiv, we explicitly programmed RNA refolding 

into the sensors to decrease the energetic barrier for switch activation. Refolding was 

incorporated into the systems by adding domains a* and x* downstream of the hairpin 

module along with a 3-nt y spacer domain (Figure S3D). Upon the trigger mRNA binding to 

the first 6 base pairs of the stem, the RNA refolding mechanism leads to a total of 9 base 

pairs being unwound from the stem. This effect results in an activated complex with similar 

secondary structure to the 7-nts of stem unwound case shown in Figure S3Aii with an 

ON/OFF ratio of 1300 ± 100. 

 

Several of the modifications made to generate an mRNA sensor with high dynamic range 

could increase system leakage. These changes include: reduction in hairpin stem length by 

1-bp, removal of some G-C base pairs at the bottom of the stem, increase in the loop size 

of the switch, and potential decrease in stem stability caused by the RNA refolding module. 

Lastly, the stem-loop region created by RNA refolding can have a detrimental effect on 

∆GRBS-linker, in turn lowering system ON state. The length of this stem, however, can be 

decreased to potentially increase sensor translation rate. 

S14.3. Selection of toehold switch mRNA sensor designs 

Putative mRNA sensors were simulated using a local implementation of NUPACK and 

assessed using custom Matlab scripts. For a specified trigger mRNA, the NUPACK pairs 

function was used to compute base pairing probabilities for all pairs of bases over the entire 

mRNA. The resulting pair probability matrix was used to compute the local single-

strandedness for all possible sensor binding sites along the trigger mRNA. This metric is 

calculated using the following equation: 

 ݈ ൌ 	
∑ ௉೔೔೔

௕
 (4) 

where ݈ is the local single-strandedness, ௜ܲ௜ is the probability that the base at position ݅ is 

unpaired, and ܾ  is the length of the mRNA sensor binding site (either 30- or 36-nts 

depending on the design). The local single-strandedness is equivalent to the normalized 
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ensemble defect (Zadeh et al., 2011b) metric implemented in NUPACK, except it is applied 

to only a portion of the RNA rather than the entire RNA sequence. 

 

For each mRNA binding site, the corresponding mRNA sensor was defined and scanned for 

the presence of stop codons in the coding region. The quality of its secondary structure 

assessed using the ensemble defect. Local single-strandedness was also calculated over the 

sensor toehold region to score its availability for binding to the trigger mRNA.  

 

After computing defect metrics for the sensors over all possible mRNA binding sites, the 

resulting designs were scored using the following function: 

  (5) 

where ߶ሺ݅ሻ is the design score for the sensor at location ݅ of the mRNA, ݈mRNA is the local 

single-strandedness of the mRNA at the sensor binding site, ݈toehold  is the local single-

strandedness of the toehold of the sensor, and ݊sensor is the normalized ensemble defect of 

the sensor. The score weight factors used were ߚଵ = 5, ߚଶ = 4, and ߚଷ = 3. The resulting 

scores were sorted from lowest to highest and used to select optimal mRNA sensor designs. 

In cases where more than one sensor was tested for a particular mRNA, an additional design 

criterion was added to prevent selection of two designs having toehold switch binding 

regions within 15-nts of each other. Since nearby binding sites tended to have very similar 

scores, this criterion ensured that sensors did not cluster around the same binding region 

on the mRNA. The sequences for the resulting mRNA sensors and the subsequences of the 

mRNAs used for triggering are listed in Table S4. 

S15. Characterization of toehold switch RyhB sRNA sensor 

The toehold switch RyhB sRNA sensor (see Table S4 for sequences) was constructed using 

the same design and in silico validation process as the mRNA sensors described in Section 

S14.3. The sensor was inserted into a pET15b-derived vector containing the ColE1 origin of 

replication and ampicillin resistance. An ASV-tagged GFP was used as the reporter and 

expression of the sensor-GFP module was driven by the proD constitutive promoter (Davis 

et al., 2011). The resulting plasmid was transformed into MG1655Pro for sensing 

experiments. 
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Output from the sensor was obtained using flow cytometry. An overnight culture of the 

MG1655Pro/RyhB-sensor strain was diluted 100-fold into fresh LB/ampicillin media 

supplemented with 100 µM FeSO4 and shaken at 37°C and 900 rpm in a 96-well plate. After 

80 minutes, aliquots of the early log phase culture were supplemented with an aqueous 

solution of 2,2’-bipyridyl to achieve the desired concentration of the iron chelator. GFP 

expression was evaluated 1 hr after addition of the inducer. Comparison control 

measurements using a constitutively expressed GFP were performed in identical conditions. 

We also conducted control experiments using exogenously expressed RyhB sRNA and an 

off-target RNA (data not shown). The RyhB sensor activated GFP expression in response to 

the exogenously-expressed RyhB, but remained inactive for the off-target RNA confirming 

its specificity for the intended target RNA. 

 

S16. Regulation of endogenous genes using toehold switches 

S16.1. Design and construction of template insertion plasmids 

Template plasmids used for generating the linear DNA fragments for  Red recombination 

were derived from the plasmid pKD13 (Datsenko and Wanner, 2000). Like pKD13, the 

template plasmids contain the conditionally replicative oriR origin that requires pir+ hosts 

such as BW25141 in order to replicate. PCR and Gibson assembly were used to insert the 

switch module downstream of priming site 4 (primer P4) of pKD13 as shown in Figure S4. 

The sequences of the switch modules used in the template plasmids are shown in Table S5. 

Primers listed in Table S5 were used to amplify the region of the template running from 

priming site 1 (primer P1) up to the conserved linker sequence of the switch module at 

priming site 5 (primer P5). Each of these primers has 50-nts of homology with the desired 

insertion site in the chromosome. Homology regions were designed to insert the switch 

module in frame with the target endogenous gene and to replace the endogenous RBS site 

with that of the switch RNA. 

S16.2. Chromosomal integration of switch modules 

Electrocompetent MG1655Pro containing the  Red recombinase plasmid pKD46 (Datsenko 

and Wanner, 2000) was transformed with the linear DNA produced from the template switch 

plasmids. After several hours of recovery with shaking at 37°C, cells were spread on 

kanamycin (25 μg mL-1) plates and incubated overnight at 37°C to select cells that had 
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integrated the switch/kanamycin-resistance cassette and to encourage loss of the pKD46 

plasmid with its temperature sensitive origin of replication. Transformants were then 

screened for phenotype (see Section S16.3) to ensure the correct gene had been disrupted. 

Confirmed transformants were then grown overnight at 37°C and transformed with the FLP 

recombinase expressing plasmid pE-FLP (St-Pierre et al., 2013). We found that pE-FLP 

excised the kanamycin marker via its flanking FRT sites with high efficiency and was 

successfully cured during growth at 37°C. The resulting switch-edited strains of MG1655Pro 

were then transformed with different plasmids expressing switch RNAs under the control of 

either PLtetO-1 or PLlacO-1 inducible promoters from pET15b-derived plasmids (ColE1 origin, 

ampicillin resistance). 

S16.3. Characterization of switch-edited strains 

Plate-based assays were used to characterize the switch-edited MG1655Pro strains. Plates 

were imaged using a flatbed scanner and images adjusted for brightness and contrast. 

S16.3.1. uidA::Switch A and uidA::Switch B 

Cells containing disrupted uidA genes were assayed on plates containing the substrate X-

Gluc (5-Bromo-4-chloro-3-indolyl--D-glucuronide sodium salt) at 25 μg mL-1, the inducer 

IPTG at 0.2 mM, and ampicillin. Cells were spread onto the plates and incubated overnight 

at 37°C. 

S16.3.2. lacZ::Switch C 

lacZ::Switch C cells were assayed on plates containing ampicillin and X-Gal (5-bromo-4-

chloro-3-indolyl--D-galactopyranoside) at 40 μg mL-1. The chemical inputs IPTG and aTc 

were added to the plates as required at concentrations of 0.2 mM and 500 ng mL-1, 

respectively. Cells were spread onto plates and incubated overnight at 37°C. 

S16.3.3. cheY::Switch D 

cheY::Switch D cells were assayed for motility on ampicillin/LB/0.25% agar plates. IPTG was 

added to the plates at a concentration of 0.2 mM. Cells were inoculated at the center of the 

plates and incubated for ~24 hours at 37°C. While cells with disrupted uidA and lacZ genes 

regained the full phenotype of the wild-type genes upon trigger RNA expression, wild-type 

cheY showed approximately 5-fold higher motility than activated cheY::Switch D cells. 
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S17. Multiplexed regulation using toehold switches 

S17.1. Design and construction of multiplexing plasmids 

Construction of the plasmids for the multiplexing system required multiple cloning stages. 

First, we synthesized new codon optimized versions of GFP, venus, and cerulean that had 

significantly decreased homology. GFP, venus, and cerulean have very similar amino acid 

sequences, with GFP deviating from venus and cerulean at only 8 positions out of 236, and 

venus and cerulean differing from one another at only 10 sites out of 236. As result, 

insertion of all three proteins into a single vector could lead to genetic instability in the 

plasmid as a result of homologous recombination. Accordingly, we employed a Monte-

Carlo-based algorithm that randomly inserted synonymous codons into each of the proteins 

to select new RNA sequences for the three proteins that simultaneously displayed low 

overall homology and made use of commonly used E. coli codons. We then used gene 

assembly (Rouillard et al., 2004) to construct plasmids bearing the new codon-optimized 

proteins (see Table S6 for sequences) and confirmed successful assembly using DNA 

sequencing. Next, we extracted switch modules from existing toehold switch plasmids and 

inserted them upstream of the new proteins and also mCherry. Following this step, we had a 

complete set of source plasmids for expressing trigger RNAs and switch RNAs coupled to 

the four output fluorescent proteins. 

 

Trigger and switch-protein sequences were then amplified from the source plasmids using 

PCR. A set of orthogonal, 30-bp domains were used in this PCR stage to create 30-nt 

homology domains flanking the amplicons to facilitate Gibson assembly of plasmids for 

expressing up to four different toehold switch components. Plasmids for expressing multiple 

triggers were derived from the pET15b vector (ColE1 origin, ampicillin resistance). These 

plasmids expressed each trigger from its own T7 promoter and each trigger also had its 

own T7 terminator (see Table S6 for trigger construct DNA sequences). Multi-trigger plasmid 

construction was verified using DNA sequencing. Plasmids expressing multiple switch RNAs 

employed only a single T7 promoter and, consequently, transcribed four switch-protein 

modules as a ~3.4-kb polycistronic mRNA accompanied by a single T7 terminator (see Table 

S6 for switches used for each mRNA). Successful assembly of these multi-switch plasmids 

was confirmed using PCR and by transforming cells with the switch plasmids and cognate 

trigger plasmids to screen by phenotype. Three different plasmids were used for testing: a 
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pCDFduet-derived plasmid with spectinomycin resistance, a pCOLAduet-derived plasmid 

with kanamycin resistance, and a pACYC-derived plasmid with chloramphenicol resistance. 

 

Notably, the switch RNA sequences in the multiplexing system were not modified in any 

way to improve their secondary structure in their new context within the polycistronic 

mRNAs. For instance, the 30-nt Gibson assembly sequences used for cloning the constructs 

were not screened to eliminate interactions with the nearby toehold domains of the switch 

RNAs, neither were toehold interactions with new codon-optimized proteins. As a result, our 

success in regulating twelve components in a cell using these toehold switch sequences 

suggests they are quite robust to changes in surrounding sequences and can be used in a 

“plug-and-play” fashion. 

S17.2. Characterization of the multiplexing system 

The multiplexing system was evaluated using BL21 Star DE3 cells. Cells were first 

transformed with the trio of multi-switch plasmids. Chemically competent cells from this 

strain were then transformed with the set of 24 trigger/multi-trigger plasmids shown in 

Figure 6 and incubated on spectinomycin (25 μg mL-1), ampicillin (50 μg mL-1), 

chloramphenicol (17 μg mL-1), and kanamycin (30 μg mL-1) plates.  

 

For flow cytometry measurements, six colonies from each of the 24 transformants were 

inoculated into LB media with the same antibiotic concentrations used for plating. These 

cells were grown overnight and diluted 100-fold into fresh LB media. After 80 minutes of 

shaking at 37°C and 900 rpm in 96-well plates, the cultures were induced with 0.1 mM IPTG. 

Measurements were taken 6 hours after induction. We found that the onset of detectable 

reporter expression was delayed for the multiplexing system compared to single toehold 

switch experiments, most likely as a result of its increased metabolic burden on the cells. 

S17.3. Analysis of multiplexing data 

We acquired data from the multiplexing cells via flow cytometry using 16 different 

fluorescence channels. To compensate for spectral overlap between reporters, we first 

generated a set of standard curves representing the typical spectral profile of each reporter. 

These standard curves were obtained from positive control cells transformed with plasmids 

for constitutive expression of each of the fluorophores. Data from these control cells were 

first gated by forward- and side-scatter as described in Section S3. These gated events were 
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then filtered by intensity to eliminate outliers. An overall intensity factor R was calculated 

using the following equation: 

 ܴ ൌ 	ට∑ ௜ݔ
ଶ

௜ ,  (5) 

where xi is the fluorescence measured in channel i. The distribution of R-values followed a 

log-normal distribution. We calculated the standard deviation of this log-normal distribution 

and filtered out those events whose R-values were more than two standard deviations away 

from the mean value of the distribution. We then normalized each of the events by their R-

value. The median from each channel in this filtered, normalized data set was used to 

generate the standard curve for each reporter. These standard curves are shown in Figure 

S5A. Notably, there is substantial overlap between the curves of GFP, venus, and cerulean, 

which makes compensation for each of these reporters challenging. 

 

We used the standard curves as a basis set for compensation of the flow cytometry data 

from cells expressing the multiplexing system. Compensation was performed on each event 

after forward- and side-scatter gating using the Matlab lsqnonneg function, a linear least 

squares fitting algorithm with non-negativity constraints. This function converted the 16-

channel flow cytometer data into a set of four intensity values for each of the reporters. 

Figure S5B-E shows representative flow cytometry fluorescence data compared to fitting 

curves consisting of a superposition of the standard curves. Agreement between 

experimental data and the fits is quite good for single-color excitation experiments, but 

becomes more challenging for multi-color excitation. 

 

We then established threshold levels defining cells actively expressing each of the 

fluorescent proteins using compensated data obtained from the system upon transcription 

of non-cognate trigger RNA 1. The median intensity level from these cells was first 

calculated for each fluorophore. The threshold levels were set by multiplying each of these 

median values by 10. The resulting thresholds were used for all of the plots in Figure 6B. A 

cell was deemed to be expressing a given protein if the fluorescence intensity measured for 

that protein was greater than or equal to the specified threshold level. Using this 

thresholding procedure, a 10-fold increase in reporter expression is equivalent to 50% of the 

cells expressing the reporter. Figure S5F-I shows the histograms used for computing the 

percentage of cells expressing for the same triggers used in Figure S5B-E. 
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S18. A layered 4-input AND circuit using toehold switches 

S18.1. Design and construction of AND circuit plasmids 

AND circuit plasmids were designed and constructed using the same PCR/Gibson assembly 

methods used for generating the multiplexing system (Section S17.1). Transcription factor 

genes ECF42_4454 and ECF41_491 (see Table S7 for sequences) were amplified from 

plasmids pVRa42_4454 and pVRa41_491, respectively (Rhodius et al., 2013). The cognate 

promoters for ECF42_4454 and ECF41_491 are P42_up4062 and P41_up1141, respectively, 

and were constructed from gene assembly. 

 

Each of the RNA inputs in the first layer of the circuit was expressed from their own IPTG-

inducible PLlacO-1 promoter (see Figure S6 for plasmid maps). First layer trigger RNAs were 

expressed from a ColE1/ampicillin plasmid, while first layer switch/transcription factor RNAs 

were expressed from a ColA/kanamycin plasmid. The second layer trigger C RNA was 

transcribed with P41_up1141 from a CDF/spectinomycin plasmid. The second layer switch C 

RNA was transcribed with P42_up4062 from a P15A/chloramphenicol plasmid and regulated 

an ASV-tagged GFP. 

 

Sets of four different first layer trigger and switch plasmids were constructed to evaluate the 

full truth table for the 4-input circuit (see Table S7 for trigger and switch construct DNA 

sequences). Conditions in which an input RNA is not present were implemented in vivo by 

using non-cognate trigger RNAs from orthogonal toehold switches not used in the circuit. 

OFF states for trigger RNAs A and B used trigger RNAs D and E, respectively. OFF states for 

switch RNAs A and B used switch RNAs F and G, respectively, and still regulated the two 

transcription factors. The use of decoy trigger and switch RNAs to represent OFF states of 

the input species ensured that cells were subject to similar metabolic loads for all entries in 

the AND gate truth table. 

S18.2. Characterization of AND circuit 

AND circuits were tested in MG1655Pro. The four plasmids required for the circuit were 

transformed into cells in two stages. The second layer CDF/spectinomycin and 

P15A/chloramphenicol plasmids were first co-transformed as these plasmids are the same 

for all input RNA combinations. Competent cells prepared from the resulting spectinomycin- 
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and chloramphenicol-resistant strain were then transformed with 16 different combinations 

of the trigger and switch RNA plasmids. 

 

AND circuit strains were measured in triplicate using flow cytometry. Cells were incubated 

overnight at 37°C and 900 rpm in LB media supplemented with spectinomycin (25 µg mL-1), 

ampicillin (50 µg mL-1), chloramphenicol (17 µg mL-1), and kanamycin (30 µg mL-1). 

Stationary phase cultures were diluted 100-fold into fresh media and shaken at 37°C for 80 

minutes. These early log phase cultures were then induced with 0.1 mM IPTG and left to 

grow for 8 hours, at which point aliquots were taken for flow cytometry. ON/OFF GFP 

fluorescence values were calculated from mode GFP values with the same procedures used 

for measuring toehold switch library ON/OFF levels. 
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