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ABSTRACT
Motivation: Duplication of an organism’s entire genome is a rare but
spectacular event, enabling the rapid emergence of multiple new gene
functions. Over time, the parallel linkage of duplicated genes across
chromosomes may be disrupted by reciprocal translocations, while
the intra-chromosomal order of genes may be shuffled by inversions
and transpositions. Some duplicate genes may evolve unrecogniz-
ably or be deleted. As a consequence, the only detectable signature
of an ancient duplication event in a modern genome may be the
presence of various chromosomal segments containing parallel para-
logous genes, with each segment appearing exactly twice in the
genome. The problem of reconstructing the linkage structure of an
ancestral genome before duplication is known as genome halving with
unordered chromosomes.
Results: In this paper, we derive a new upper bound on the gen-
ome halving distance that is tighter than the best known, and a new
lower bound that is almost always tighter than the best known. We
also define the notion of genome halving diameter, and obtain both
upper and lower bounds for it. Our tighter bounds on genome halving
distance yield a new algorithm for reconstructing an ancestral duplic-
ated genome. We create a software package GenomeHalving based
on this new algorithm and test it on the yeast genome, identifying a
sequence of translocations for halving the yeast genome that is shorter
than previously conjectured possible.
Availability: GenomeHalving is available upon email request.
Contact: py@cs.duke.edu; amink@cs.duke.edu

1 INTRODUCTION

1.1 Biological motivation
In the course of evolution, gene duplications are extremely signific-
ant events, enabling the emergence of new gene functions (Ohno,
1970). The presence of one copy of each gene is normally suf-
ficient for the survival of the species, allowing other (redundant)
copies to evolve with less selective pressure. Beyond the duplica-
tion or multiplication of individual genes, it is possible for the entire
genome of a species to be duplicated in a process known as tetra-
ploidization. Although tetraploidization is normally lethal, in rare
cases a tetraploid can become a stabilized diploid with two sets of
identical chromosomes. The functionalities of the genes in one set
are usually preserved, while the genes in the other set are now free
to evolve into novel functional units, presenting the species with a
tremendous opportunity for new evolutionary possibilities. A poten-
tially more important consequence of whole-genome duplication is
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the combinatorial number of possibilities for the co-evolution of a
group of genes in concert (Fryxell, 1996).

Evidence supporting the occurrence of whole-genome duplication
has been adduced in numerous plant genomes (Ahn and Tanksley,
1993; Gaut and Doebley, 1997; Moore et al., 1995; Scheffler et al.,
1997; Shoemaker et al., 1996; Paterson et al., 1996), as well as
in vertebrate genomes (Nadeau, 1991; Lundin, 1993; Gibson and
Spring, 2000; Gu et al., 2002; McLysaght et al., 2002). A particu-
larly convincing example of whole-genome duplication is found in
the yeast genome. Wolfe and Shields (1997) provided early strong
evidence that the genome of Saccharomyces cerevisiae is the product
of an ancient tetraploidization, which has been further supported
by subsequent studies (Vision and Brown, 2000; Seoighe et al.,
2000; Langkjær et al., 2003; Dietrich et al., 2004; Kellis et al.,
2004). However, we note that there exist alternative views on whole-
genome duplication in yeast (Mewes et al., 1997; Coissac et al.,
1997; Llorente et al., 2000a,b) and that it remains a somewhat con-
troversial issue. Evidence also exists to suggest the flowering plant
Arabidopsis may have undergone whole-genome duplication, but
this is not conclusive (Ku et al., 2000; Paterson et al., 2000; Lynch and
Conery, 2000). For surveys on whole-genome duplication, see Wolfe
(2001) and Durand (2003).

During the course of evolution subsequent to genome duplic-
ation, the parallel linkage of genes across chromosomes may be
disrupted by reciprocal translocations, while the intra-chromosomal
order of genes may be modified by inversions and transpositions.
Some duplicate genes may evolve unrecognizably or be deleted. As
a consequence, sometimes the only extant evidence of an ancient
duplication in a modern genome is the presence of various duplic-
ate chromosomal segments containing parallel paralogous genes
dispersed throughout the genome.

The genome halving problem is to construct a (minimal) sequence
of operations—translocations, inversions or transpositions—that
transform an ancestral genome immediately after a genome duplic-
ation event into a modern genome; or conversely but equivalently, a
minimal sequence of operations that transform a modern genome G

into an ancestral duplicated genome G′. In the latter interpretation
of the problem, the modern genome G is said to be halved by these
transformations, since G′ consists of two identical copies of each
chromosome, representing the ancestral genome immediately after
duplication.

El-Mabrouk et al. (1998) propose two formulations of the gen-
ome halving problem. The problem of genome halving with ordered
chromosomes considers a chromosome as an ordered sequence of
gene blocks, and aims to construct a sequence of operations that
transform an ancient duplicated genome to that of a modern species
via translocations and intra-chromosomal operations, like inversions
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and transpositions. Seoighe and Wolfe (1998) study this problem
using a computer simulation and a heuristic analytical method.
El-Mabrouk et al. propose an exact algorithm to solve this prob-
lem (El-Mabrouk et al., 1999; El-Mabrouk, 2000; El-Mabrouk and
Sankoff, 2002).

We are here interested in the related problem of genome halv-
ing with unordered chromosomes, which considers a chromosome
as an unordered collection of gene blocks, and aims to construct a
sequence of only translocations that transform the synteny or link-
age structure of the genome of an ancestral duplicated genome to
that of a modern species. Both the ordered and unordered problems
can provide insight to understanding the possible evolutionary path
that leads from the ancestral duplicated genome to that of a modern
species. However, one aspect of the comparative importance of the
unordered version of the genome halving problem resides in the pos-
sibility that intra-chromosomal operations, such as inversions and
transpositions, alter the order of gene blocks within a chromosome
repeatedly between translocations, as suggested by El-Mabrouk et al.
(1998). In such a context, the intra-chromosomal order of the gene
blocks and the intra-chromosomal operations are of only marginal
significance in exploring the possible optimal sequence of translo-
cation events that transform an ancient genome to its current state;
as a result, the unordered formulation of the problem as discussed in
this paper is of greater relevance. Furthermore, a potential practical
constraint on the application of genome halving with ordered chro-
mosomes in some cases might be the unavailability of data on the
intra-chromosomal order of gene blocks for a species.

El-Mabrouk et al. (1998) provide both upper and lower bounds
for the problem of genome halving with unordered chromosomes,
and give a heuristic algorithm for computing the ancestral genome.
We improve both of their bounds, and then design and implement
an algorithm for reconstructing an ancestral duplicated genome. We
create a software package GenomeHalving and apply it to the yeast
genome to obtain a shorter halving path than was previously conjec-
tured possible. In addition, we define the notion of genome halving
diameter, and offer an upper bound and a lower bound that almost
always match for genomes with a realistic number of chromosomes.

1.2 Definitions and notation
For the remainder of the paper, we refer to the problem of genome
halving with unordered chromosomes as simply genome halving, for
brevity. In this formulation of the problem, a genome G is a set of
chromosomes and a chromosome Si is a collection of gene blocks, or
blocks. Since we are interested in studying the translocation history
of the ancient duplicated genome, we can ignore gene blocks that
occur only once in the genome (due to subsequent gene deletion or
mutation) because they contribute no useful information in recon-
structing the translocation history of the genome. Thus, we restrict
our attention to gene blocks that appear exactly twice in the genome.
If a gene block happens to appear twice in the same chromosome, it
is called a 2-block. A genome G = {S1, S2, . . . , Sn} can be repres-
ented by an equivalent intersection graph as follows (El-Mabrouk
et al., 1998). Create a vertex vi for each chromosome Si ; connect vi

and vj with an undirected edge e(vi , vj ) if and only if Si ∩ Sj �= ∅
and i �= j ; connect vi to itself with a loop if and only if Si con-
tains a 2-block. A vertex with (without) a loop to itself is called a
loop-vertex (non-loop-vertex). Note that a loop-vertex is adjacent to
itself. Denote by h(v) the number of vertices adjacent to v, includ-
ing v itself. A vertex v with h(v) = k will sometimes be called a

k-vertex. A pair of adjacent (non-loop) 1-vertices are referred to as a
perfectly matched vertex pair. A graph consisting of only perfectly
matched vertex pairs is called a perfect matching graph. A duplic-
ated genome with two identical sets of chromosomes corresponds to
a perfect matching graph. To simplify notation, we use the symbol G
interchangeably to denote both a genome and the intersection graph
derived from that genome.

The basic operation allowed in the genome halving problem is
translocation, or the exchange of gene blocks between two chro-
mosomes. We represent a translocation between vi and vj with the
quadruplet δ = (vi , vj , Bi , Bj ), where Bi ⊆ Si and Bj ⊆ Sj , indic-
ating the movement of block set Bi from Si to Sj and of block set
Bj from Sj to Si . In the above formulation, neither fission nor fusion
of chromosomes are allowed: Si �= ∅; Sj �= ∅; when Bi = ∅, we
require that Bj �= Sj ; when Bj = ∅, we require that Bi �= Si .
Sometimes, we omit Bi and Bj and just write δ(vi , vj ). After the
translocation δ(vi , vj ), vertex vi is denoted by δvi and vertex vj is
denoted by δvj . A vertex vk that is adjacent to vi or vj before δ(vi , vj )

must be adjacent to δvi or δvj , provided i �= k and j �= k. If vi is
adjacent to vj before δ(vi , vj ), either or both of δvi and δvj may be
loop-vertices. To make these notions more concrete, Figure 1 shows
an example of a sequence of translocations that transform a particular
genome into an ancestral genome immediately after duplication.

1.3 Problem definition
The genome halving problem requires finding the minimum number
d(G) of translocations that are sufficient to transform a given genome
G into an ancestral duplicated genome G′ containing two identical
sets of chromosomes. We call d(G) the genome halving distance of
G. Let |G|be the size of genomeG. Since |G′| is even and |G| = |G′|,
we require that |G| be even.

We define the genome halving diameter for genomes of size n,
D(n), as the maximum value of the genome halving distance for any
genome with n chromosomes:

D(n) = max
|G|=n

d(G)

The genome halving diameter problem is to find D(n) for even n.
The rest of the paper is organized as follows. We first give an

upper and a lower bound for the genome halving diameter problem
in Section 2. Then in Section 3, we give a new upper bound for the
genome halving distance d(G) that is tighter than the best known,
and a new lower bound that is almost always tighter than the best
known. Based on the insight obtained in the analysis of these tighter
bounds for genome halving distance, we report a novel algorithm to
reconstruct ancestral duplicated genomes in Section 4. In Section 5,
we analyze the yeast genome with a software package GenomeHalv-
ing we have developed to implement our algorithm, and identify a
sequence of translocations for halving the yeast genome that is of
shorter length than was previously conjectured possible. We close
with a discussion of our results.

2 GENOME HALVING DIAMETER
In this section, we obtain an upper bound and a lower bound for
the genome halving diameter problem. For genomes with a realistic
number of chromosomes, the upper bound almost always matches
the lower bound.
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Fig. 1. Two translocations are sufficient to transform the intersection graph on the left representing a genome with four chromosomes into a perfect matching
graph. In this example, v1 corresponds to S1 = {1, 2, 3, 6}, v2 to S2 = {2, 3, 4}, v3 to S3 = {4, 5, 6} and v4 to S4 = {1, 5, 7, 7}. In the first translocation, v3

exchanges block 4 with blocks 1 and 7 from v4. In the second translocation, v1 exchanges blocks 1 and 6 with block 4 from v4.

2.1 Genome halving diameter: upper bound
El-Mabrouk et al. (1998) studied the diameter problem in which
chromosomes can be merged and split, and offered an upper bound
of n to construct a ‘trivial’ duplicated genome. Their construction
simply merges all chromosomes into one big chromosome using n−1
fusion translocations, and then divides the resultant chromosome
into two identical chromosomes using a fission translocation. By
examining this problem with a bit more scrutiny, we are able to
derive a tighter upper bound without resorting to either fusions or
fissions.

For ease of exposition, we introduce a little more notation. Denote
by I (vi , vj ) one copy of each of the blocks shared by vertices vi

and vj ; note that if vi is a loop-vertex we permit vi = vj , in which
case I (vi , vi) contains only one copy of each 2-block contained in
vi . Denote by I(v) the collection of blocks shared between v and
all its adjacent vertices, including itself. Note that I(vi) is just Si .
Finally, a genome with n chromosomes that has either n or n − 1
loop-vertices is defined to be a loopy genome.

Theorem 2.1. D(n) ≤ n − 1; if we restrict our attention to
non-loopy genomes, we have D(n) ≤ n − 2.

Proof. We give a constructive proof. Color all perfectly matched
vertices black, and color the remaining vertices white. Now select a
vertex pair (v1, v2) as follows.

• If there exists a white loop-vertex, select it as v1. If there exists
another white loop-vertex, select it as v2; otherwise select an
arbitrary white vertex as v2.

• If there is no white loop-vertex, since each white vertex must
have least one white neighbor, we can arbitrarily select a pair
of neighboring white vertices as v1 and v2.

Color v1 and v2 black. Then perform translocation δ1(v1, v2, B1, ∅)

where B1 = I(v1)\(I (v1, v2)∪I (v1, v1)). Note that one of I (v1, v1)

or I (v1, v2) could be empty, but not both. Also note that if v1 contains
a 2-block, B1 will contain only one copy of that 2-block. After trans-
location δ1, vertex δ1v1 is a non-loop 1-vertex whose only neighbor
is δ1v2.

Next, select another white loop-vertex, if it exists, as v3; oth-
erwise choose an arbitrary white vertex as v3. Perform translocation
δ2(δ1v2, v3, B2, ∅) where B2 = I(δ1v2) \ I (δ1v1, δ1v2). Note that
both copies of the 2-blocks in δ1v2, if they exist, will be passed to v3.
Now, after two translocations, we have produced a perfectly matched
vertex pair, (δ1v1, δ2δ1v2), and each is newly colored black.

Repeat the above operations until we are left with only four white
vertices. Since every two translocations generate a pair of perfectly
matched vertices, we have performed at most n− 4 translocations to
this point. It is easy to verify that three more translocations are suffi-
cient to transform any set of four vertices into two perfectly matched
vertex pairs. Hence, the total number of translocations needed to
halve any genome with n chromosomes is at most n − 1.

Now we restrict our attention to non-loopy genomes and show that
D(n) ≤ n − 2. We discuss two cases.

(1) If there exist perfectly matched vertices in the initial graph,
we observe that these perfectly matched vertices require no
translocations and hence we must have D(n) ≤ (n−1)−2 ≤
n − 2.

(2) If there are no perfectly matched vertices in the initial graph,
we observe that the final four white vertices must contain at
least two white non-loop-vertices, since we start with at least
two non-loop-vertices by definition, and take care to exhaust
all the white loop-vertices before considering any white non-
loop-vertex. In such a case, it is easy to verify that two more
translocations are sufficient to transform the remaining four
vertices into two perfectly matched pairs and hence we must
have D(n) ≤ n − 2.

We have thus shown that the total number of translocations
needed to halve a non-loopy genome with n chromosomes is at
most n − 2. �

2.2 Genome halving diameter: lower bound
Before proceeding to this section, we note that obtaining a lower
bound on genome halving diameter is the most technically chal-
lenging problem addressed in this paper. As a result, the proof is
unavoidably more involved, and may at certain points be tedious.
We preface the proof with an overview intuition, but readers unin-
terested in the details can safely skip ahead to the statement of the
lower bound itself in Section 2.2.5.

2.2.1 Proof intuition and overview To derive a lower bound on
the number of translocations required to transform an arbitrary graph
into a perfect matching graph, it is easier to study the reverse process
in which a perfect matching graph is transformed into an arbitrary
graph. More specifically, we study the special case of transforming a
perfect matching graph G(V , E) into a clique K(V ), a graph whose
vertices are all pairwise adjacent.

One critical observation is that if a vertex v is adjacent to either v1

or v2 after a translocation δ(v1, v2), then v must have been adjacent
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Fig. 2. Imagine that translocation δ(v1, v2) transforms the graph on the left
to the 5-clique on the right. If we consider v1 and v2 as one vertex ṽ, the
graph on the left can be viewed as a 4-clique.

Fig. 3. A pseudo-graph G̃ on the right can be derived from an intersection
graph G on the left. Vertices and edges in graph G are depicted as solid circles
and lines, respectively; pseudo-nodes and pseudo-edges in pseudo-graph G̃

are depicted as dashed circles and lines, respectively.

to either v1 or v2 before the translocation. Let δ(v1, v2) be the last
of any series of translocations that transform a graph with vertex set
V = {v1, v2, . . . , vn} into an n-vertex clique. We observe that if we
view v1 and v2 as one vertex ṽ such that ṽ’s neighbors are the union
of the neighbors of v1 and v2, then the n − 1 vertices ṽ, v3, . . . , vn

are pairwise adjacent before translocation δ(v1, v2). In other words,
the graph before translocation δ(v1, v2) can be viewed as an (n− 1)-
clique, if v1 and v2 are considered as a single vertex. For an example
illustration, see Figure 2.

Based on this observation, an induction proof is constructed along
the following lines. We first introduce the concept of a pseudo-clique
and show that the size of the largest pseudo-clique in a graph can
be increased by at most one with each translocation, providing us
with an inductional device (Lemma 2.4). Then by analyzing the base
case to find the largest pseudo-clique in a perfect matching graph
(Lemma 2.6), we have a proof by induction to obtain a lower bound
for the halving diameter (Corollary 2.8).

2.2.2 Additional notation and definitions A central device used
in this section is the pseudo-graph, which is derived from an inter-
section graph and provides an alternative view thereof. Given an
intersection graph G(V , E), a pseudo-node ṽi is defined as a non-
empty subset of the vertices V . Two pseudo-nodes are disjoint if
their intersection is empty. Given two disjoint pseudo-nodes ṽi and
ṽj , if no vertex in ṽi has an adjacent vertex in ṽj , then ṽi and ṽj

are non-adjacent; otherwise, they are adjacent. Given a particular
set of disjoint pseudo-nodes, we can connect each pair of adjacent
pseudo-nodes with a pseudo-edge and get a pseudo-graph G̃ (see
Fig. 3). For readability, we sometimes omit the pseudo description
for a pseudo-edge when it is clear from context. We emphasize a
pseudo-graph G̃ exists only in the context of an underlying intersec-
tion graph G, and the adjacencies in G̃ are completely determined by
the adjacencies in G, given a particular set of pseudo-nodes. In this

sense, G̃ is said to be derived from G. In particular, if translocations
performed on an underlying graph G change the adjacencies in G,
the adjacencies in the derived graph G̃ may change correspondingly.
We also note that multiple pseudo-graphs can be derived from the
same underlying intersection graph G by choosing different sets of
vertices to be the pseudo-nodes.

We define adjacency rules between a vertex and a pseudo-node in
an analogous manner: given a vertex vi and a pseudo-node ṽj , where
vi /∈ ṽj , if vertex vi has no adjacent vertex in pseudo-node ṽj , then
vertex vi and pseudo-node ṽj are non-adjacent; otherwise, they are
adjacent.

A pseudo-graph is complete if all the pseudo-nodes in it are pair-
wise adjacent. Now we provide two definitions that apply to complete
pseudo-graphs, expanding vertex pair and pseudo-clique, which will
be important later in the proofs.

Definition 2.2. Given a complete pseudo-graph G̃ with a set of
k disjoint pseudo-nodes Ṽ , and a pseudo-node ṽ ∈ Ṽ containing a
vertex pair (vi , vj ), the vertex pair (vi , vj ) is called an expanding
vertex pair for pseudo-graph G̃ if there is a translocation δ(vi , vj )

such that the vertices contained in ṽ can be split into two new disjoint
pseudo-nodes ṽi 
 vi and ṽj 
 vj satisfying the following two
conditions:

(1) the k + 1 pseudo-nodes in {ṽi} ∪ {ṽj } ∪ (Ṽ \ {ṽ}) and their
induced edges after translocation δ(vi , vj ) form a complete
pseudo-graph G̃′.

(2) either |ṽi | = 1 or ṽi contains an expanding vertex pair for the
newly formed complete pseudo-graph G̃′, and the same holds
for ṽj .

The translocation δ(vi , vj ) together with the split of ṽ into ṽi 
 vi

and ṽj 
 vj is referred to as an expansion and is denoted by ε(vi , vj ).

Definition 2.3. A complete pseudo-graph G̃ with a set of k dis-
joint pseudo-nodes Ṽ is called a pseudo-clique if for all ṽ ∈ Ṽ either
|ṽ| = 1 or ṽ contains an expanding vertex pair for pseudo-graph G̃.

2.2.3 Inductional device We now prove a lower bound on D(n)

by induction. We begin with the following lemma, which shows that
each translocation can increase the size of the largest pseudo-clique
in a pseudo-graph by at most one.

Lemma 2.4. Given an intersection graph G, if translocation δ

results in a new intersection graph G′ and a k-pseudo-clique can be
derived from G′, then a (k−1)-pseudo-clique can be derived from G.

Proof. Denote the k-pseudo-clique derived from G′ as K̃ ′ and let
its pseudo-nodes be Ṽ ′ = {ṽ1, ṽ2, . . . , ṽk}. For concreteness, suppose
translocation δ is between vertices vi and vj . We study two cases.

(1) If vi and vj belong to two distinct pseudo-nodes in Ṽ ′, suppose
w.l.o.g. that vi ∈ ṽk−1 and vj ∈ ṽk . Define a new pseudo-node
ṽ = ṽk−1∪ṽk , and let Ṽ = {ṽ1, ṽ2, . . . , ṽk−2, ṽ}. We claim that
the k − 1 pseudo-nodes in Ṽ together with the set of induced
edges connecting them form a (k − 1)-pseudo-clique K̃ that
can be derived from G.

Indeed, we have that the pseudo-nodes in Ṽ are pairwise
disjoint, which follows immediately from the fact that the
pseudo-nodes in Ṽ ′ are disjoint. Furthermore, any trans-
location between vi and vj adds no new edge between
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pseudo-nodes in Ṽ \ {ṽ} and does not affect the connectiv-
ity between ṽ and any pseudo-node in Ṽ \ {ṽ}. Therefore,
pseudo-nodes in Ṽ must all be pairwise adjacent before per-
forming δ(vi , vj ), showing that K̃ is complete. We still need
to show that each pseudo-node in Ṽ either has cardinality 1
or contains an expanding vertex pair.

By definition, ṽ contains an expanding vertex pair (vi , vj ).
For any other pseudo-node ṽt ∈ Ṽ with |ṽt | > 1, since Ṽ ′ and
its induced edges in G′ form a k-pseudo-clique K̃ ′, pseudo-
node ṽt contains an expanding vertex pair, say (va , vb), for
K̃ ′. For any vertex vt ∈ ṽt , if vertex vt is adjacent (non-
adjacent) to any pseudo-node ṽs in Ṽ \ {ṽt } in G′, it must
be adjacent (non-adjacent) to ṽs in G. Furthermore, if vt is a
loop-vertex (non-loop-vertex) in G′, then it is a loop-vertex
(non-loop-vertex) in G. Therefore, by Definition 2.2, it is
straightforward to verify that (va , vb) is an expanding vertex
pair for the pseudo-graph that is derived from G by Ṽ , together
with its induced edges.

(2) If, on the other hand, vi and vj belong to at most one pseudo-
node in Ṽ , there exists a set Ṽ of k − 1 pseudo-nodes in Ṽ ′
containing neither vi nor vj and thus unaffected by trans-
location δ. More precisely, if vertex vs ∈ ṽs ∈ Ṽ and
vertex vt ∈ ṽt ∈ Ṽ are adjacent (non-adjacent) in G′, then
they are adjacent (non-adjacent) in G; if vs is a loop-vertex
(non-loop-vertex) in G′, then it is a loop-vertex (non-loop-
vertex) in G, and the same is true for vt . Therefore, the
pseudo-nodes in Ṽ and the induced edges connecting them
form a (k − 1)-pseudo-clique K̃ that can be derived from G.

Putting everything together proves the lemma. �

2.2.4 Base case for the induction Lemma 2.4 provides us with an
inductional device to derive a lower bound. We next study the base
case by finding the largest pseudo-clique that can be derived from
a perfect matching graph, but this requires some further machinery.
Given a vertex v (pseudo-node ṽ), the pseudo-degree of v (ṽ) is the
number of pseudo-nodes adjacent to v (ṽ) and is denoted by h̃(v)

(h̃(ṽ)). Given a pseudo-graph G̃, if a pseudo-node ṽ only contains
vertices of pseudo-degree 0 or 1, ṽ is referred to as a singly-adjacent-
pseudo-node. Note that though a singly-adjacent-pseudo-node ṽ

contains only vertices of pseudo-degree 0 or 1, the pseudo-degree
of ṽ itself may be greater than 1.

Lemma 2.5. Given a singly-adjacent-pseudo-node ṽ in a com-
plete pseudo-graph G̃, if ṽ contains an expanding vertex pair, we
must have

|ṽ| ≥ 2h̃(ṽ)−1

Proof. We prove by induction. When h̃(ṽ) = 1, the
lemma is trivially true. Now suppose that the lemma holds for
h̃(ṽ) = k; we show that it also holds for k + 1.

Denote the k+1 pseudo-nodes adjacent to ṽ by ṽ1, ṽ2, …, ṽk+1. For
concreteness, let (va , vb) be the expanding vertex pair contained in
ṽ. Since ṽ is a singly-adjacent-pseudo-node, the pseudo-degree of va

and vb is at most 1. Assume w.l.o.g. that ṽk+1 is the pseudo-node adja-
cent to vb, if such a pseudo-node exists. After expansion ε(va , vb), ṽ

is split into two new pseudo-nodes, ṽa 
 va and ṽb 
 vb, in the newly
formed complete pseudo-graph G̃′. The k + 1 pseudo-nodes ṽa , ṽ1,
ṽ2, . . . , ṽk together with their induced edges also form a complete

Fig. 4. Panel I depicts pseudo-node ṽ before expansion. Pseudo-node ṽ con-
tains a perfectly matched vertex pair (vc , vd). Panels II, III and IV illustrate
cases 1, 2 and 3 discussed in the proof of Lemma 2.6, respectively. In pan-
els III and IV, when pseudo-nodes are merged as discussed in the proof, the
resultant pseudo-nodes are represented in bold.

pseudo-graph G̃s . We claim that ṽa is a singly-adjacent-pseudo-
node in G̃s (though it may not be a singly-adjacent-pseudo-node in
G̃′). The claim follows from the fact that expansion ε(va , vb)

cannot connect any vertex in ṽa to any of the pseudo-nodes ṽ1,
ṽ2, . . . , ṽk , though such expansion might connect a vertex in ṽa

to ṽb or ṽk+1.
According to the definition of expansion, ṽa must contain an

expanding vertex pair for G̃′ and such a vertex pair is necessarily
an expanding vertex pair for G̃s . Therefore, ṽa is a singly-adjacent-
pseudo-node with pseudo-degree k in the complete pseudo-graph
G̃s and it contains an expanding vertex pair. According to the induc-
tion hypothesis, we have |ṽa | ≥ 2k−1. Symmetrically, we have
|ṽb| ≥ 2k−1. Thus we have |ṽ| = |ṽa | + |ṽb| ≥ 2k . This completes
the proof. �

Lemma 2.6. Let G̃ be a k-pseudo-clique derived from a perfect
matching graph G. For k > 2, we must have |G| ≥ k × 2k .

Proof. We prove the lemma by showing that each of the k

pseudo-nodes in G̃ contains at least 2k vertices. Consider any such
pseudo-node ṽ. Because G̃ is derived from a perfect matching graph,
when k > 2, each pseudo-node must contain an expanding ver-
tex pair. For concreteness, let (va , vb) be the expanding vertex
pair in ṽ. After expansion, pseudo-node ṽ is split into pseudo-
node ṽa 
 va and pseudo-node ṽb 
 vb. Denote the resulting
pseudo-graph by G̃s . Since there is no loop-vertex in a perfect
matching graph, ṽ must contain a perfectly matched vertex pair
(vc, vd), which connects ṽa to ṽb in G̃s . Assume w.l.o.g. vc ∈ ṽa

and vd ∈ ṽb.
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We discuss three possible expansion cases as depicted in Figure 4
and show in each case that |ṽ| ≥ 2k .

(1) |{vc, vd}∩{va , vb}| = 2. In other words, va = vc and vb = vd .
After the expansion, ṽa is a singly-adjacent-pseudo-node with
pseudo-degree k in the resulting pseudo-graph G̃s . According
to Lemma 2.5, we have |ṽa | ≥ 2k−1. Symmetrically, |ṽb| ≥
2k−1. Hence |ṽ| ≥ 2k .

(2) |{vc, vd} ∩ {va , vb}| = 1. Assume w.l.o.g. va = vc. After the
expansion, it is possible that va has pseudo-degree 2 in the res-
ulting graph G̃s . To reduce its pseudo-degree to 1, we merge
the pseudo-node(s) adjacent tova into one single pseudo-node,
and obtain a pseudo-graph G̃m. Now ṽa is a singly-adjacent-
pseudo-node in G̃m with pseudo-degree at least k − 1. Since
there is no loop vertex in ṽa and ṽa contains an expanding
vertex pair, ṽa must contain a perfectly matched vertex pair
vaa and vab. By expanding ṽa and merging the pseudo-node(s)
adjacent to vaa into a single pseudo-node as before, we can
derive a complete pseudo-graph in which ṽaa is a singly-
adjacent-pseudo-node with pseudo-degree k−1 that contains
an expanding vertex pair for the pseudo-graph. According
to Lemma 2.5, we have |ṽaa | ≥ 2k−2. Hence |ṽa | ≥ 2k−1.
Similarly, we can show |ṽb| ≥ 2k−1. Thus we have |ṽ| ≥ 2k .

(3) |{vc, vd} ∩ {va , vd}| = 0. By an argument similar to that of
case 2, we can show |ṽ| ≥ 2k .

This completes the proof. �
We note that for |G| < 24, the largest pseudo-clique that can be

derived from a perfect matching graph G is a 2-pseudo-clique.

2.2.5 Statement of the lower bound Lemmas 2.4 and 2.6 complete
the induction and lead to the following theorem and corollary, the
straightforward proofs of which are omitted for brevity.

Theorem 2.7. Given a perfect matching graph G with n vertices,
it takes at least n−k translocations to transform G into an n-clique,
where k = 2 when n < 24; when n ≥ 24, k is the largest integer
that satisfies k × 2k ≤ n.

Corollary 2.8. D(n) ≥ n−k, where k = 2 when n < 24; when
n ≥ 24, k is the largest integer that satisfies k × 2k ≤ n.

3 GENOME HALVING DISTANCE
While the diameter problem attempts to find the maximum halving
distance for all genomes of size n, the distance problem attempts
to find the halving distance for a particular genome of size n. By
definition, the halving distance for a particular genome is less than
or equal to the diameter.

3.1 Genome halving distance: upper bound
We can obtain a tighter upper bound on the genome halving distance
by analyzing the algorithm presented in the proof for Theorem 2.1
more closely. In the worst case, it may take two translocations to
obtain each perfectly matched pair of vertices. However, if the inter-
section graph contains a non-loop 1-vertex, a perfectly matched
vertex pair can be produced using just one translocation. In some
sense, the existence of a non-loop 1-vertex has the potential to
save one translocation in transforming the intersection graph to a
perfect matching graph. This observation leads to the following
lemma.

Lemma 3.1. Given a genome G of size n, d(G) ≤ n−2+γ (G)−
min{s, (n − 4)/2}, where s is the number of non-loop 1-vertices in
G; γ (G) = 1 if G is a loopy genome, and γ (G) = 0 otherwise.

Proof. During the transformation of the final four vertices, the
existence of a non-loop 1-vertex does not necessarily help to save
translocations; for example, two translocations are still required to
transform a star graph with four vertices to a perfect matching graph
(a star graph is one in which one central vertex is adjacent to all the
other 1-vertices). In contrast, when the number of remaining white
vertices is greater than 4, the existence of a non-loop 1-vertex can
always save one translocation. However, to achieve the potential
savings of a non-loop 1-vertex, we need to consume two vertices.
More precisely, after one translocation, the non-loop 1-vertex and its
neighbor become a perfectly matched pair and thus cannot be used
in future translocations. The claim then follows. �

By extending the intuition behind Lemma 3.1, we can get an even
better upper bound on d(G). For readability, in the remainder of
Section 3.1, we sometimes omit the non-loop description for a vertex
when it is clear from context.

Given a graph G(V , E), a well-separated vertex set W ⊂ V is a
set of non-loop-vertices such that:

(1) for any vi , vj ∈ W , vi and vj are not adjacent and share no
common neighbor if h(vi) > 1 and h(vj ) > 1; and

(2)
∑

vi∈W h(vi) ≤ (n − 4)/2.

Theorem 3.2. Given a genome G of size n, d(G) ≤ n − 2 +
γ (G)−|W�|, where W� denotes the maximum well-separated vertex
set contained in G, and γ (G) is defined as in Lemma 3.1.

Proof. Observe that we can create two 1-vertices by performing a
translocation between the two neighbors of a 2-vertex. For example,
consider the case depicted in Figure 5 in which v1 is a 2-vertex: after
the translocation δ(v2, v3, ∅, B3) where B3 = I(v3) \ I (v3, v4), we
obtain two 1-vertices, δv1 and δv3. Therefore by Lemma 3.1, we
have that the existence of a 2-vertex can also save one translocation.
However, four vertices (v1, v2, v3 and v4) are consumed to achieve
the potential savings of a 2-vertex. In general, we can create a (k−1)-
vertex from a k-vertex with one translocation. By applying the above
procedure recursively, any k-vertex has the potential to save one
translocation at a cost of consuming 2k vertices.

In addition, to realize the potential savings of a non-loop 1-vertex
v1 whose only neighbor is v2, we first find a vertex v′ ∈ V \ W� that
will not be consumed during the processing of the vertices in W�.
Note that the existence of v′ is guaranteed by the well-separatedness
of W�: the total number of vertices that will be consumed will be at
most 2 × ∑

vi∈W� h(vi) ≤ n − 4 < n. Then perform translocation
δ(v2, v′, B2, ∅) where B2 = I(v2) \ I (v1, v2). This leaves (v1, δv2)

as a perfectly matched pair.
Label the vertices in W� as α1, α2, . . . , α|W�| such that h(αi) ≤

h(αj ) for all i < j . If h(αj ) increases, we say αj is destroyed. We
now show that if we process the vertices α1, α2, . . . , α|W�| in order,
then we neither consume nor destroy any αj ∈ W� while processing
αi ∈ W�.

• If h(αi) = 1, we realize the potential savings of αi by touching
only its neighbor and v′. By the well-separatedness of W�, no
αj ∈ W� is consumed or destroyed.
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Fig. 5. A translocation between two neighbors of a 2-vertex, v1, can produce
two 1-vertices (in this case v1 and v3).

• If h(αi) > 1, realizing the potential savings of αi may affect
αi , its neighbors, v′, and possibly some vertices adjacent to
αi’s neighbors. But by this point, all the potential savings of 1-
vertices must have already been realized (since the vertices are
processed in order), and any αj ∈ W� with h(αj ) > 1 shares no
neighbor with αi by the well-separatedness of W�. Therefore,
no αj ∈ W� is consumed or destroyed.

Thus, we can fully realize the potential savings of all the αi ∈ W�,
resulting in the upper bound as claimed. �

3.2 Genome halving distance: lower bound
By studying the so-called fan structure of the intersection graph
induced by genome G, El-Mabrouk et al. obtain a lower bound of

log2 ([(e − n/2)/p] + 1)� for d(G), where n is the number of chro-
mosomes in G, e is the number of edges in the intersection graph
representing G, and p is the largest number of neighbors shared by
any two vertices in the intersection graph. Their strategy is to count
the maximum number of edges that can be reduced with one trans-
location. This strategy is also at the core of their greedy algorithm
to find the optimal number of translocations. In this section, we use
a different strategy to derive a lower bound that is almost always
tighter than the above lower bound; some experimental evidence for
this claim comes in the analysis of the yeast genome later in the
paper.

We have the following lemma.

Lemma 3.3. d(G) ≥ 
 h(v�)
2 �, for h(v�) > 1, where v� is the vertex

with the maximum degree in G.

Proof. When h(v�) > 1, label edges initially incident to v� as
bad. A bad edge can disappear by being merged into another bad
edge. Alternatively, it can become an edge connecting the two ver-
tices of a perfectly matched vertex pair, in which case we say the
edge becomes good. Let b(G) be the number of bad edges in G.
Initially, b(G) = h(v�). Since there are no bad edges in the final per-
fect matching graph, we must remove b(G) bad edges to arrive at the
final graph. We enumerate below all possible types of translocations
and their influence upon b(G).

• A translocation between v� and a neighbor v1 decreases b(G) by
at most two. Such a translocation can happen when v� is a loop-
vertex with a 1-vertex neighbor, v2. A translocation between v�

and v1 turns the edge e(v�, v2) into a good edge, and merges
edges e(v�, v�) and e(v�, v1) into one bad edge. See Figure 6
for an illustration.

• A translocation between v� and a vertex v1 not adjacent to v�

decreases b(G) by at most two. Such a translocation can happen

Fig. 6. There exists a translocation between v� and v1 that decreases the
number of bad edges by two. Bad edges are depicted as bold solid segments;
good edges as dashed segments.

Fig. 7. There exists a translocation between v� and v1 that decreases the
number of bad edges by two. Bad edges are depicted as bold solid segments;
good edges as dashed segments.

Fig. 8. There exists a translocation between v1 and v2 that decreases the
number of bad edges by two. Bad edges are depicted as bold solid segments;
good edges as dashed segments.

when v� is a 2-vertex, v1 is a 1-vertex, and v� and v1 have a
common neighbor 2-vertex, v2, as illustrated in Figure 7. A
translocation between v� and v1 turns both of the bad edges
incident to v� into good edges.

• A translocation between two neighbors of v� decreases b(G) by
at most two. This case can happen when v� is a 2-vertex with a
neighboring 1-vertex, as illustrated in Figure 8. A translocation
between v1 and v2 merges the two bad edges incident to v� into
one good edge.

• A translocation between a neighbor of v� and a vertex not adja-
cent to v� or between two vertices neither of which is adjacent
to v� does not decrease b(G) (though it may increase b(G) by
one).

As a single translocation decreases b(G) by at most two, the total
number of translocations required is at least 
h(v�)/2�. �

Note that when h(v�) = 1, our lower bound is simply d(G) ≥ 0,
since in a perfect matching graph, h(v�) = 1 and d(G) = 0.

By extending Lemma 3.3, we get the following theorem.
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Theorem 3.4. Given a graph G(V , E), let V1 and V2 be two
disjoint subsets of V , such that no vertex in V1 ∪ V2 is part of any
perfectly matched vertex pair, and every vertex in V1 has a neighbor
in V2 and vice versa. We have

d(G) ≥ max
V1,V2⊂V

⌈
max(|V1|, |V2|)

2

⌉

Proof. Assume w.l.o.g. |V1| ≥ |V2|. Let us redefine the initial sel-
ection criteria for bad edges from before. For each v ∈ V1, choose an
arbitrary edge incident to v and label it as a bad edge. Again, since
there are no bad edges in the final perfect matching graph, the total
change in the number of bad edges must be |V1|. Similar to the analy-
sis in Lemma 3.3, we can show that any translocation decreases the
number of bad edges by at most two. This proves the theorem. �

4 ALGORITHM TO RECONSTRUCT ANCESTRAL
DUPLICATED GENOMES

We now present an algorithm to reconstruct ancestral duplicated gen-
omes based on the intuition behind the proof of Theorem 3.2. The
algorithm Genome-Halving first colors perfectly matched vertices
black and other vertices white. Then it processes the white vertices
until either (1) there are only white loop-vertices left, at which point
it calls procedure Loop-Vertices; or (2) there are at most four white
vertices left, at which point it calls procedure 4-Vertices.

We describe the algorithm in detail below. We first present the main
routine Genome-Halving and then describe the procedures Loop-

Vertices and 4-Vertices called by Genome-Halving. Finally, we
describe a routine 1-Vertex that is called by both Genome-Halving

and Loop-Vertices.
The main algorithm Genome-Halving(G(V , E)) is presented

below.

(1) Color all perfectly matched vertices in V black, and color the
remaining vertices white.

(2) If no white non-loop-vertex exists, call the procedure Loop-

Vertices(V ), which will terminate.

(3) If the number of white vertices is less than or equal to four,
call the procedure 4-Vertices(V ), which will terminate.

(4) Find a white non-loop-vertex v1 of the smallest degree. If
h(v1) = 1, call the procedure 1-Vertex(v1, V ). Otherwise,
label any two of its neighbors as v2 and v3. Since vertex v2

is not a non-loop 1-vertex, it must have another neighbor dif-
ferent from v1. Label it as v4. Note that it is possible v4 = v2

or v4 = v3. Perform translocation δ(v2, v3, B2, ∅) where
B2 = I(v2)\I (v2, v4). Then v2 becomes a 1-vertex, and h(v1)

is decreased by one. Call the procedure 1-Vertex(δv2, δV ).
Note that at this point, δV contains at least four white vertices.

(5) Repeat Steps 2, 3 and 4 until termination.

For a vertex set V whose white vertices are all loop-vertices, we
define the procedure Loop-Vertices(V ) as follows:

(1) Arbitrarily select a white vertex v1 and a white vertex v2.
Perform translocation δ(v1, v2, B1, B2) where B1 = I(v1) \
(I (v1, v1) ∪ I (v1, v2)) and B2 = I (v2, v2). Then v1 becomes
a non-loop 1-vertex.

(2) If v2 also becomes a non-loop 1-vertex, color v1 and v2 black
and go to Step 4.

(3) If, on the other hand, v2 is not a non-loop 1-vertex, call the
procedure 1-Vertex(δv1, δV ). Note that at this point, δV

contains at least four white vertices.

(4) If no white vertex remains, terminate; otherwise repeat Steps
1, 2 and 3.

For a vertex set V that contains at most four white vertices, the
procedure 4-Vertices(V ) transforms the white vertices in V into
perfectly matched vertex pairs with two or three translocations and
terminates. We omit the details here for brevity.

For any non-loop 1-vertex v1 ∈ V , where V contains at least
four white vertices, we define the procedure 1-Vertex(v1, V ) as
follows:

(1) Label the neighbor of v1 as v2.

(2) Find the white vertex with the maximum degree in V \{v1, v2}
and label it as v3. Note that the existence of v3 is guaranteed
by the fact that V has at least four white vertices, including v1

and v2.

(3) Perform translocation δ(v2, v3, B2, ∅) where B2 = I(v2) \
I (v1, v2). Color v1 and v2 black.

We have implemented the above algorithm in Java. A user-friendly
graphical interface is provided for illustrating the sequence of trans-
locations used to reconstruct an ancestral duplicated genome. For
example, the result of halving a genome represented by an 8-clique
graph with our program is shown in Figure 9.

5 GENOME HALVING DISTANCE AND
ANCESTRAL GENOME FOR YEAST

To compare the results of our bounds analysis and of our algorithm
with those reported by El-Mabrouk et al. (1998), we use the same
yeast genome data set. The data was initially drawn from Wolfe and
Shields (1997), and is reproduced here in Table 1.

The analysis of El-Mabrouk et al. (1998) gives the bounds,
3 ≤ d(G) ≤ 16. Their program reconstructs a duplicated yeast
genome using thirteen translocations, and they conjectured this
value to be optimal based on a series of experiments they per-
formed to find a lower halving distance. In comparison, our
analysis yields the bounds, 6 ≤ d(G) ≤ 12, and our algorithm
halves the yeast genome using only eleven translocations, as
shown in Figure 10 and the Appendix. In Table 2, we
present the allocation of gene blocks among the chromosomes of
one possible ancestral yeast genome immediately after genome
duplication.

6 CONCLUSIONS AND FUTURE DIRECTIONS
In this paper, we define the concept of genome halving dia-
meter D(n) and obtain both upper and lower bounds for it. We
also derive a tighter upper bound for the genome halving dis-
tance d(G) than the best known. In addition, we develop a new
strategy for computing a lower bound for genome halving dis-
tance; the lower bound we get is almost always tighter than the
best known, and in particular, is tighter for the yeast genome halv-
ing problem. Furthermore, we design and implement a software
package GenomeHalving to reconstruct possible ancestral duplic-
ated genomes. The same yeast data set used by El-Mabrouk et al.
(1998) is analyzed with our bound formulae, and tested with our
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Fig. 9. One sequence of six translocations that transform an 8-clique graph into a perfect matching graph, provided as graphical output of our Java software
package GenomeHalving.

Table 1. Gene blocks in the 16 chromosomes of the modern yeast genome

Chromosome Gene blocks

I 2 1
II 4 3 7 8 5 6
III 9 10 11
IV 20 12 12 54 15 21 3 13 16 17 24 22 14 23 19 18 9
V 28 25 27 4 26 13
VI 55 36
VII 36 25 26 32 6 33 5 30 34 31 29
VIII 35 14 37 29 1
IX 38 39 27
X 10 40 41 28 42
XI 42 40 43 35 41 52 38
XII 53 53 31 55 16 18 17 45 30 15 44
XIII 46 44 19 43 54 48 47 46
XIV 49 20 37 50 39 11
XV 49 21 22 52 50 23 45 51 47 2
XVI 48 32 33 51 8 24 7 34

software. We are able to compute better upper and lower bounds,
and also identify a sequence of translocations to halve the yeast
genome that is of shorter length than was previously conjectured
possible.

The reconstructed ancestral yeast genome, together with the his-
tory of translocations leading to this reconstruction, should be
interpreted with the right perspective. It would be risky to assume that
the results obtained here reflect the actual translocation history of the
yeast genome. Any such interpretation of our results, or of evolution-
ary biology results obtained by combinatorial optimization analysis
in general, is likely to rest on the unsubstantiated assumption that a
genome takes the most parsimonious path possible when changing
from one state to another. In actuality, a modern genome is the result
of a long course of evolution that is shaped by a host of factors, many
of which are not easily traceable today. In light of this, we would
suggest that the result of any combinatorial optimization procedure

applied to a problem in evolutionary biology should be interpreted as
constraining the set of possible paths rather than suggesting a single
definitive path.

Our lower bound on genome halving distance is almost always
tighter than or equal to the best known. As mentioned before, the
analysis of El-Mabrouk et al. (1998) gives a lower bound of 3 for
the yeast genome with 16 chromosomes, while our analysis yields a
lower bound of 6. As another example, the method of El-Mabrouk
et al. (1998) applied to the 8-clique graph of Figure 9 gives a lower
bound of 3 while our analysis yields a lower bound of 4. In gen-
eral, the method of El-Mabrouk et al. (1998) gives lower bounds of

log2((n/2)+1)� and 
log2(n/2)� for an n-clique graph and an n-star
graph, respectively, while our analysis yields tighter lower bounds
of n/2 in both cases. Given a genome G with n chromosomes, the
analysis of El-Mabrouk et al. (1998) always gives a lower bound
less than 
log2([n(n − 2)/2p] + 1)�; in comparison, our method
always yields a lower bound greater than 
n/4�. A detailed case-by-
case analysis shows that only in some special cases when n = 6, 8
or 10 and p = 1 does the analysis of El-Mabrouk et al. (1998) yield
a tighter lower bound; in all other cases, our lower bound is as tight
or tighter. For genomes with n ≥ 20, our lower bound is always
strictly tighter.

Though we have not managed to derive an exact formula for the
genome halving diameter D(n), our upper and lower bound almost
always match for genomes with a realistic number of chromosomes:
for a non-loopy genome with fewer than 3 × 23 = 24 chromosomes,
our lower bound equals our upper bound. For a non-loopy genome
with chromosomal number between 24 and 4 × 24 = 64, or a loopy
genome with fewer than 24 chromosomes, our upper bound differs
from our lower bound by only one.

There is ample room for further research. A more careful analysis
of the structure of the intersection graph might render insight into
strategies for tightening the upper and lower bounds on genome halv-
ing diameter D(n) as well as genome halving distance d(G). Ideally,
we would like to find exact formulae for both problems. Formulating
an algorithm for calculating the lower bound on d(G) encompasses
an interesting graph theory problem, and we would like to find a way
to solve it.
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Fig. 10. One sequence of 11 translocations that transform the modern yeast genome into an ancestral duplicated genome, provided as graphical output of our
Java software package GenomeHalving. Thirteen translocations was previously conjectured to be optimal. Details of the 11 translocations are given in the
Appendix.

Table 2. Gene blocks in the 16 chromosomes of one possible ancestral yeast
genome just after genome duplication

Chromosome Gene blocks

I, XV 2 1
II, VII 6 5 3
III, XI 9
IV, VIII 14
V, IX 27 38 25 26 13 4 46 43 44 47 19 54 52 35 53 31 30 45 16

18 17 15 29 12 21 22 23
VI, XII 55 36
X, XIV 28 42 40 41 10 39 49 50 37 20 11
XIII, XVI 48 32 33 34 51 24 8 7

On the practical side, we would like to see how well our soft-
ware package GenomeHalving performs for other genomes with
evidence of ancient whole-genome duplication. However, this is
pending more data from the genomics community. Though evidence
for genome duplication is abundant in many species, the community
has yet to reach a consensus view on whether whole-genome duplic-
ation occurred in these species. A particularly illustrative example
is Arabidopsis. Though much of its genome is covered by paired
chromosomal regions (AGI, 2000; Paterson et al., 2000), arguments
have been made supporting a single whole-genome duplication event
(Lynch and Conery, 2000) or multiple duplication events at differ-
ent times (Vision et al., 2000). In light of this, we are cautious

to restrict our attention to the yeast genome, the only genome in
which the community has a widely accepted view of whole-genome
duplication.
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APPENDIX
The sequence of translocations shown in Figure 10:

δ1 = {S8, S15, {1, 29, 35, 37}, ∅}
δ2 = {S4, S15, {3, 9, 12, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 54}, ∅}
δ3 = {S15, S7, {9, 12, 12, 13, 15, 16, 17, 18, 19, 20, 21, 21, 22,

22, 23, 23, 24, 29, 3, 35, 37, 45, 47, 49, 50, 51, 52, 54}, ∅}
δ4 = {S7, S12, {9, 12, 12, 13, 15, 16, 17, 18, 19, 20, 21, 21, 22,

22, 23, 23, 24, 25, 26, 29, 29, 30, 31, 32, 33, 34, 35, 36, 37,
45, 47, 49, 50, 51, 52, 54}, ∅}

δ5 = {S2, S12, {4, 7, 8}, ∅}
δ6 = {S12, S11, {4, 7, 8, 9, 12, 12, 13, 15, 15, 16, 16, 17, 17, 18,

18, 19, 20, 21, 21, 22, 22, 23, 23, 24, 25, 26, 29, 29, 30, 30,
31, 31, 32, 33, 34, 35, 37, 44, 45, 45, 47, 49, 50, 51, 52, 53,
53, 54}, ∅}

δ7 = {S11, S13, {4, 7, 8, 12, 12, 13, 15, 15, 16, 16, 17, 17, 18, 18,
19, 20, 21, 21, 22, 22, 23, 23, 24, 25, 26, 29, 29, 30, 30, 31,
31, 32, 33, 34, 35, 35, 37, 38, 40, 41, 42, 43, 44, 45, 45, 47,
49, 50, 51, 52, 52, 53, 53, 54}, ∅}

δ8 = {S3, S13, {10, 11}, ∅}
δ9 = {S13, S5, {4, 10, 11, 12, 12, 13, 15, 15, 16, 16, 17, 17, 18,

18, 19, 19, 20, 21, 21, 22, 22, 23, 23, 25, 26, 29, 29, 30, 30,
31, 31, 35, 35, 37, 38, 40, 41, 42, 43, 43, 44, 44, 45, 45, 46,
46, 47, 47, 49, 50, 52, 52, 53, 53, 54, 54}, ∅}

δ10 = {S5, S9, {4, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23,
25, 26, 29, 30, 31, 35, 37, 43, 44, 45, 46, 47, 49, 50, 52,
53, 54}, ∅}

δ11 = {S5, S14, {10, 28, 40, 41, 42}, {11, 20, 37, 39, 49, 50}}
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