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Abstract

Given a one-dimensional graphG such that any two consecutive
nodes are unit distance away, and such that the minimum number
of links between any two nodes (thediameterof G) isO(log n), we
prove an
(n log n= log log n) lower bound on the sum of lengths
of all the edges (i.e., theweight of G). The problem is a variant
of the widely studiedpartial sumproblem. This in turn provides a
lower bound on Euclidean spanner graphs with small diameter and
low weight, showing that the upper bound from [1] is almost tight.

1 Introduction

Given a set ofn pointsV = fv1; : : : ; vng in Rd and a ge-
ometric graphG = (V;E), define theweight of an edge
e = (vi; vj) as w(e) = kvivjk, that is, the Euclidean
distance between pointsvi and vj . The weight of a sub-
graphG0 = (V 0; E0) is w(G0) = w(E0) =

P
e2E0 w(e).

The shortest pathbetween nodesvi and vj , denoted by
PG(vi; vj), is the smallest-weight path that connectsvi and
vj in G, while theminimum link path, denoted by�(vi; vj),
is the one with the smallest number of edges. Define the
diameterof the graph as�(G) = max1�i;j�n j�(vi; vj)j.

The problem studied in this paper arises from the study
of spanner graphs: a subgraphG0 � G is at-spannerof G if
for anyvi; vj 2 V ,

w(PG0 (vi; vj))=w(PG(vi; vj)) � t:

Ideally, we would like to have a sparse spanner (i.e., with
O(n) edges) with low maximum vertex degree, low weight,
and small diameter. Aryaet al. [1] investigated the problem
of constructing spanners while optimizing various combina-
tions of the above measures simultaneously. For example,
they showed that it is possible to construct a spanner with
O(n) edges,O(log n) diameter, andO(w(T ) log n) weight,
whereT is the minimum spanning tree ofG. The remain-
ing question is then whether this combination is optimal. In
other words, we wish to know whether there is a graph so that
any spanner of it withO(log n) diameter has
(w(T ) logn)
weight.
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To answer this question, we focus on the following
problem, which is interesting in its own right. For any
graph where every nodevi lies on thex-axis with coordinate
i, what is the smallest weight it can have for a given
diameter? In particular, we provide an
(n logn= log logn)
lower bound on the weight of any such graph withO(logn)
diameter, implying that the result of Aryaet al. (i.e.,
O(n logn)) is almost tight. (Note that for the type of graphs
that we are inspecting, the weight of its minimum spanning
tree isn� 1. So from now on, we simply bound the weight
of the graph with respect ton.)
Related work. This one-dimensional graph problem is re-
lated to the partial sum problem, where given an array of
numbersA[1]; : : : ; A[n], one would like to construct a data
structure of small size so that a partial sum likeS(i; j) =P

i�k�j A[k] can be computed efficiently. Roughly speak-
ing, the query time there corresponds to the diameter in our
case, while the canonical sets usually constructed for the data
structures there correspond to the edge set in our graphs. The
partial sum problem is a special case of orthogonal range
searching, and has been widely studied. We only give a small
sample of results here. For static partial-sum problem, the
query time is
(�(n;m)) if m units of storage is used [4].
Tight bounds for the partial sum problem in a dynamic set-
ting under various models were provided in [3]. The problem
has also been studied for multi-dimensional arrays [2].
Notation. Assume from now on thatV = fv1; : : : ; vng is a
set ofn ordered points inR1 such that any two consecutive
points are unit distance apart. Ablock of nodes[i : j] is
defined asfvi; vi+1; : : : ; vjg, andvi andvj are referred to
as endpointsof the block. Let�(vk) be thecoveringof
a nodevk , defined as the number of edges that span over
vk, i.e., the number of edges(vi; vj) such thati < k < j.
set�(G) = maxv2V �(v). Two edges(vi; vj) and(vk ; vl)
intersectif i < k < j < l. A graph is called astack if
it only contains non-intersecting edges. Acluster in a stack
graphG is a maximal subgraphG0 = (V 0; E0) induced by
V 0 = [i : j] such that edge(vi; vj) 2 E0, and no edge in
E nE0 spans over any point inV 0.

2 Diameter and Weight

Weight and covering. The following lemma converts the
problem of relatingw(G) and�(G) into the problem of
relating�(G) and�(G). Let �(n; Æ) denote the smallest
covering for a graph withn nodes and diameter at mostÆ; let



w(n; Æ) denote the weight of such a graph.

LEMMA 2.1. If �(n; Æ) � g(n) whereg(n) is a concave
function, thenw(n; Æ) = 
(ng(n)).

Proof. LetG = (V;E) be a graph with diameterÆ, covering
�(n; Æ), and weightw(n; Æ). A vertexv is heavyif �(v) �
g(n)=6; otherwise,v is light. Let Vh be the set of heavy
nodes. We claim thatjVhj � n=2, which implies the lemma.

Suppose to the contrary thatjVhj < n=2. Decompose
Vh into a set of disjoint maximal blocksB = fB1; : : : ; Bkg,
that is, no larger blockB0 � Vh can containBi, for any
1 � i � k. By contracting the induced subgraph of each
Bi into a single nodevi, for 1 � i � k, we obtain a new
graphG0 = (V 0; E0). Obviously,jV 0j � n � jVhj � n=2,
and �(G0) � �(G) = Æ. Furthermore, we have that
�(G0) � g(n)=3. To see this, first note that all light vertices
from V remain light inV 0. For a contracted heavy vertex
vi, �(vi) � �(v�i ) + �(v+i ), wherev�i (v+i ) is the vertex
in V 0 to the immediate left (right) ofvi along the horizontal
line. Sincev�i andv+i are light,�(vi) � g(n)=3. We further
reduce the size ofV 0 to n=2 by contracting the subgraph
induced by the firstjV 0j � n=2 + 1 vertices into a single
node. This produces a graph withn=2 nodes and diameter
at mostÆ, and its covering is at mostC = g(n)=3. Since
g(n) is a concave function, this leads to a contradiction, as
�(n=2; Æ) � g(n=2) � g(n)=2 > C.

Stack graphs. The next lemma allows us to focus only on
the covering and diameter of a stack graph.

LEMMA 2.2. For any graphG = (V;E), there is a stack
graph S = (V;E) such that�(S) � �(G) and�(S) �
(�(G) + 1)�(G).

Proof. Intuitively, in order to obtain a stack graph, we wish
to split an edgee if it intersects other edges. However, we
have to do it in a way such that we do not introduce new
intersections while removing an old one. In particular, given
a graphG0 = (V 0; E0), whereV 0 = [i : j] is a block of nodes
from V , let �E0 = E0 n f(vi; vj)g if edge(vi; vj) exists. We
now find edge�e whose left endpoint is leftmost in�E0. If
there are more than one of such edges, choose the one with
the rightmost right endpoint. Letvs be the right endpoint of
�e. For each edge(v; v0) 2 �E0 that coversvs, we split it at
vs into two new edges(v; vs) and(vs; v0). After splitting all
edges coveringvs, we obtain a new edge set�E� where no
edge from it covers nodevs (see Figure 1). We repeat this
process recursively in the two subgraphs induced by nodes
fvi; : : : ; vsg and byfvs; : : : ; vjg.

The above process produces a stack graphS without
increasing the covering for any vertexv 2 V . Furthermore,
a split on an edgee 2 E happens only ife intersects some
edge that covers its left endpoint, and each split removes
at least one such intersection. This implies that�(S) �
(�(G) + 1)�(G). We omit the proof from here.

(a) (b)

Figure 1: Block[i : j] with �e (the thick edge) andvs (hollow
point). Dotted edges intersect�e in (a) and are split in (b).

We now present the relation between the diameter and
covering of stack graphs. It is natural to consider a stack
graphS = (V;E) as a treeT : Each node� represents an edge
e� 2 E, and the subtree rooted at� consists of all the edges
from E contained ine� . An edgee1 2 E is a child of edgee
if e1 � e (i.e,e containse1) and there is no other edgee0 2 E

such thate1 � e0 � e. We add an artificial edge connecting
nodesv1 andvn (if it does not exist), which corresponds to
the root ofT . The depth ofT is at most�(S) + 1, and every
edge can have at most2�(S) children. Therefore,

(2.1) n = jV j � (2 ��(S))�(S)+2:

Putting everything together. By (2.1) and Lemma 2.2, for
any graphG with n nodes, there is a corresponding stack
graphS also withn nodes:

n � (2 ��(S))�(S)+2 � [ 2 ��(G) � (�(G) + 1) ]�(G)+1 :

Take logarithms on both sides,

�(G) + 1 �
lnn

ln�(G) + ln(�(G) + 1) + ln 2
:

Substituting�(G) = O(logn) in the above inequality we
obtain�(G) = 
(logn= log logn): Lemma 2.1 now implies
the main result:

THEOREM 2.1. Given any1-dimensional graphG with unit
distance between consecutive nodes and�(G) = O(logn),
w(G) = 
(n logn= log logn).

COROLLARY 2.1. There is a graph that any
of its t-spanners with diameter O(logn) has

(w(T ) logn= log logn) weight.
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