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Abstract To answer this question, we focus on the following

Given a one-dimensional gragh such that any two consecutiveProblem, which is interesting in its own right. For any
nodes are unit distance away, and such that the minimum numBERPh Where every nodg lies on th@:-axis with coordinat.e
of links between any two nodes (tb@meterof G) is O(log n), we ¢ What is the smallest weight it can have for a given
prove an(n log n/ log log ) lower bound on the sum of lengthsdiameter? In particular, we provide &n logn/loglogn)

of all the edges (i.e., theeightof G). The problem is a variant lower bound on the weight of any such graph witfiog n)

of the widely studiecpartial sumproblem. This in turn provides adiameter, implying that the result of Aryat al. (i.e.,
lower bound on Euclidean spanner graphs with small diameter &3 10g n)) is almost tight. (Note that for the type of graphs

low weight, showing that the upper bound frdm [1] is almost tighthat we are inspecting, the weight Qf its minimum Spar?ning
tree isn — 1. So from now on, we simply bound the weight

of the graph with respect t0.)

1 Introduction . . . .
Related work. This one-dimensional graph problem is re-

. . B o
Given a set of pointsV' = {v1,...,v,} IN R® and & ge- |4teq to the partial sum problem, where given an array of
ometric graph = (V, ), define theweightof an edge \mpersd[1],. .., A[n], one would like to construct a data
e = (vi,v5) asw(e) = |lviwyl|, that is, the Euclidean gy cryre of small size so that a partial sum I&8, j) =

distance between points andv;. The weight of a sub- >

graphG' = (V', E") is w(G') = w(E') = > .cpw(€)-  ing the query time there corresponds to the diameter in our
The shortest pathbetween nodes; and v;, denoted by caqe while the canonical sets usually constructed for the data
FPe(vi, v;), is the smallest-weight path that conneet®nd i ctures there correspond to the edge set in our graphs. The
vj in G, while theminimum link pathdenoted byr(vi, ;). partial sum problem is a special case of orthogonal range
is the one with the smallest number of edges. Define @@arching, and has been widely studied. We only give a small
diameterof the graph as\ (&) = maxi<;,j<n [7(vi, vj)|- sample of results here. For static partial-sum problem, the

The problem s.tudied in this paper arises from the_St”HMery time isQ(a(n, m)) if m units of storage is used[4].
of spanner graphs: a subgraghC G is at-spannenf G if  Tight hounds for the partial sum problem in a dynamic set-

foranyv;,v; € V, ting under various models were providedih [3]. The problem
w(Pe (vi,v5))/w(Pa(vi,vj)) < t. has also been studied for multi-dimensional arrays [2].

otation. Assume from now on thdt' = {v,...,v,}isa

Igeally, dwe W\?vlﬁfll'tfr:]o ;;vemavs??rfz spranntlerv\(llﬁ.,i V\r’: t ofn ordered points ilk! such that any two consecutive
(n) edges) 0 aximum vertex degree, 1ow Welgh s are unit distance apart. #ock of nodes[i : j] is

Zl?gosnrz{?"g'.imztzh :‘gsat ‘1':'[:]0 'nt\./sft'%ategrt.geSp:;gtr’rl]ir.?]d?ﬁned as{v;, vit1,...,v;}, andv; andv; are referred to
tions of tl;elago pe meas V\rlels s'mp Iltallﬁleg Vsl ! llJ:or o arln s endpointsof the block. Lety(v;) be thecovering of
tlhey showed th:;/t it is poussibleltouconstruuctyé spann):ar with odevy, defined as the number of edges that span over

. . ., .., the number of edgds;,v;) such thati < k& .
O(n) edgesO(logn) diameter, and (w(7T ) logn) weight, Uk 9e;, v;) Sk<J

. - . ' setx(G) = maxyev x(v). Two edgegv;,v;) and(vk, v;)
where7 is the minimum spanning tree ¢f. The remain- intersectif i < k < j < I. A graph is called atackif

ing question is then whether this combination is optimal. n nly contains non-intersecting edges.chisterin a stack

other words, we wish to know whether there isa graph so t ?1 hG | . , b
o . s a maximal subgrap&y’ = (V', E') induced b
any spanner of it wittD(log ) diameter ha&(w(7") logn) l%/, F; i - 7] such that edg@i ) e(E’, an)d e ?/n

weight. E '\ E' spans over any point iii’.

i<r<; Alk] can be computed efficiently. Roughly speak-
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w(n, d) denote the weight of such a graph.

LEMMA 2.1. If x(n,d) > g(n) whereg(n) is a concave
function, thenw(n, §) = Q(ng(n)).

Proof. LetG = (V, E) be a graph with diametér covering Figure 1: Block[i : j] with e (the thick edge) and (hollow
x(n, 8), and weightw(n, §). A vertexv is heavyif x(v) > point). Dotted edges interseein (a) and are splitin (b).
g(n)/6; otherwise,v is light. Let V}, be the set of heavy
nodes. We claim thg¥},| > n/2, which implies the lemma.
Suppose to the contrary thgt,| < n/2. Decompose

(b)

We now present the relation between the diameter and
covering of stack graphs. It is natural to consider a stack
. S ) ! graphS = (V, &) asatred': Each node represents an edge
Vi Into a set of disjoint mIaX|maI blocks = {_Bl’ 0 Bel, e € &, and the subtree rooted atconsists of all the edges
that ',S’ no larger blOClB. S Va can containg;, for any from € contained ire.. An edgee; € € is a child of edge
gg i < k.‘ B]y cor&tractflnglthf |.n<iutl:€ed subgtrqph of eaquel C e (i.e,e contains;) and there is no other edgec &

: thG?Em?/? g,) e’é’b or i ZV,— S we OV alg a n2ew such thak; C e’ C e. We add an artificial edge connecting
graphG’ = (V*, E'). Obviously,|V'| > n —|Va| > n/2,  qqeq, andw, (if it does not exist), which corresponds to

and A(G') < A(G) = 4. Furthermore, we have that o root of 7. The de :

N S ; . . pth ofl" is at mosty(S) + 1, and every
x(G") < g(n)/3. To see this, first note that all light vert|ce%dge can have at maaA (S) children. T(he)refore
from V' remain light inV’. For a contracted heavy vertex '

vi, x(vi) < x(v;) + x(vi"), wherev; (v is the vertex (2.1) n=|V|< (2 AS))XE)+2,
in V' to the immediate left (right) of; along the horizontal
line. Sincev;” andv;" are light,x(v;) < g(n)/3. We further
reduce the size oV’ to n/2 by contracting the subgrapha
induced by the firstV’| — n/2 + 1 vertices into a single 9
node. This produces a graph with'2 nodes and diameter;, < (2- A(g))x($)+2 <[2-AG) - (x(G)+1) ]X(G)+1 ]
at mostd, and its covering is at most = g(n)/3. Since . .

g(n) is a concave function, this leads to a contradiction, as Take logarithms on both sides,

x(n/2,6) = g(n/2) 2 g(n)/2> C. @) +1> Inn

Stack graphs. The next lemma allows us to focus only on X ~ InA(G) +In(x(G) +1) +In2°

the covering and diameter of a stack graph.

Putting everything together. By (2.1) and Lemma_2]2, for
ny graphG with n nodes, there is a corresponding stack
raphS also withn nodes:

SubstitutingA(G) = O(logn) in the above inequality we
LEMMA 2.2. For any graphGG = (V, E), there is a stack obtainy(G) = Q(logn/loglogn): Lemme2.1 now implies
graphS = (V, &) such thaty(S) < x(G) and A(S) < the main result:

(X(@) + DAG). THEOREM2.1. Given anyl-dimensional grapld: with unit
Proof. Intuitively, in order to obtain a stack graph, we wishlistance between consecutive nodes Arid) = O(logn),
to split an edges if it intersects other edges. However, wey(G) = Q(n logn/loglogn).

have to do it in a way such that we do not introduce ne .
intersections while removing an old one. In particular, give%/ORQLLARY 2.1. There . r:s d'a graphl that hany
agraphG’ = (V', E'), whereV' = [i : j]is ablock of nodes of Its i-spanners witk h lameter O(logn) as
fromV, letE' = E'\ {(vi,v;)} if edge(v;, v;) exists. We 2(w(T)logn/loglogn) weight

now find edges whose left endpoint is leftmost i&’. If

there are more than one of such edges, choose the one witkerences

the rightmost right endpoint. Let, be the right endpoint of

_ , iy "
e. For each edgév,v’) € E' that coversy,, we split it at 1] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid.

vs into two new edgesv, v,) and (v, v'). After splitting all Euclidean spanners: Short, thin and laniroc. 27th Ann.
edges covering,, we obtain a new edge sét* where no ACM Sympos. Theo. Comput995, 489-498.

edge from it covers node; (see Figuréll). We repeat this [2] B. Chazelle and B. Rosenberg. The complexity of computing
process recursively in the two subgraphs induced by nodes partial sums off-line.Int. J. Comput. Geom. Appl1(1991),

{vi,...,vs} and by{vs,...,v;}. 33-45. . . .
The above process produces a stack gr&phithout [3] M. Patragu and E. D. Demaine. Tight bounds for the partlal-
increasing the covering for any vertexc V. Furthermore, sums problemProc. 15th Ann. ACM-SIAM Sympos. Discrete

Algorithms 2004, 20-29.

A. C. Yao. Space-time tradeoff for answering range queries.
Proc. 14th Ann. ACM Sympos. Theo. Compi©82, 128—
136.

a split on an edge € E happens only it intersects some
edge that covers its left endpoint, and each split remové@
at least one such intersection. This implies th4tS) <
(x(G) + 1)A(G). We omit the proof from here.
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