JIYOUN (JJ) JEONG

Wyss Institute, Center for Life Science Bldg., 3 Blackfan Circle, Boston, MA 02115 jiyoun.jeong@wyss.harvard.edu

RESEARCH EXPERIENCE

Wyss Institute at Harvard University, Boston, MA

September 2019 - Present

Postdoctoral Research Fellow, supervised by Peng Yin

Georgia Institute of Technology, Atlanta, GA

May 2019 - August 2019

Postdoctoral Research Fellow, supervised by Harold D. Kim

Georgia Institute of Technology, Atlanta, GA

September 2012 - May 2019

Graduate Research Assistant, supervised by Harold D. Kim

- · Studied the kinetic process of short DNA (<150 bp) cyclization by single-molecule Fluorescence Resonance Energy Transfer (FRET) DNA looping and unlooping assays
- · Designed and performed single-molecule Protein Induced fluorescence Enhancement (PIFE) assays to study how protein target search kinetics is affected by DNA looping

EDUCATION

Georgia Institute of Technology

September 2012 - May 2019

Ph. D. in Physics

Thesis: Single-molecule Biophysics of DNA Cyclization

Advisor: Dr. Harold D. Kim

University of Michigan – Ann Arbor

September 2009 - December 2011

B.S. in Physics

PEER-REVIEWED PUBLICATIONS

Jeong, J. and Kim, H. D. Determinants of cyclization-decyclization kinetics of short DNA with sticky ends. (in revision), preprint at bioRxiv; doi: https://doi.org/10.1101/503490

Jeong, J. and Kim, H. D. (2019) Base-pair mismatch can destabilize small DNA loops through cooperative kinking. *Physical Review Letters*, 122(21), 218101.

Jeong, J., Le, T. T., and Kim, H. D. (2016). Single-molecule fluorescence studies on DNA looping. *Methods*, 105, 34-43.

TEACHING AND MENTORING EXPERIENCE

Georgia Institute of Technology, Atlanta, GA

Graduate Teaching Assistant

2012 - 2014

Undergraduate Honor's Thesis Mentor

2017 - 2018

HONORS AND AWARDS

Georgia Institute of Technology, Atlanta, GA

The Weatherly Fund Travel Award (\$500)

2017

Best Poster Travel Award (\$2,000)

2017

University of Michigan, Ann Arbor, MI

University Honors 2010, 2011

- Jeong, J., Kim, H. D. (2016). Observation of flexibility reversal in DNA bending. Physics of Living Systems Lunch & Learn, Georgia Institute of Technology
- Jeong, J., Kim, H. D. (2016). The effect of local melting of DNA on DNA loop formation. American Physical Society (APS) March Meeting 2016
- Jeong, J., Kim, H. D. (2016). The effect of local melting of DNA on DNA loop formation. Invited Talk in the AKPA-KPS Joint Session at APS March Meeting 2016
- Jeong, J., Kim, H. D. (2015). The effect of local melting of DNA on DNA loop formation. Physics of Living Systems Lunch & Learn, Georgia Institute of Technology
- Jeong, J., Kim, H. D. (2014). How DNA melting influences flexibility. Physics of Living Systems Lunch & Learn, Georgia Institute of Technology

POSTER PRESENTATIONS

- Jeong, J., Kim, H. D. (2019). Base-pair mismatch can destabilize small DNA loops through cooperative kinking. 2019 Annual Meeting of the International Physics of Living Systems (iPoLS) Network
- Jeong, J., Kim, H. D. (2017). Small DNA loops can be destabilized by base pair mismatches 2017 Annual Meeting of the International Physics of Living Systems (iPoLS) Network
- Jeong, J., Kim, H. D. (2017). Observation of flexibility reversal in DNA bending. The Career, Research, and Innovation Development Conference (CRIDC), Georgia Institute of Technology (Travel Award for the Best Poster Presentation)
- Jeong, J., Kim, H. D. (2017). Observation of flexibility reversal in DNA bending. Biophysical Society 61st Annual Meeting 2017
- Jeong, J., Kim, H. D. (2016). The effect of local melting of DNA on DNA loop formation. Biophysical Society 60st Annual Meeting 2016
- Jeong, J., Kim, H. D. (2015). How DNA melting influences flexibility 2015 Annual Meeting of the International Physics of Living Systems (iPoLS) Network

TECHNICAL SKILLS

1. Experimental skills

- · Microscopy: objective-type total internal reflection fluorescence microscopy
- · Molecular biology: Polymerase Chain Reaction (PCR), gel electrophoresis, oligonucleotide design and labeling, site-directed mutagenesis, *E. coli* transformation and cloning

2. Software

- · Matlab: used for simulations and developed Matlab GUI for data collection and image analysis
- · Visual C++: used for data acquisition and device control for EMCCD (Andor ixon), serial port connection, and simulations
- · VPython: used as a visual aid for in-classroom numerical analysis