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Abstract. We propose a self-assembly model in which the glue strength between
two juxtaposed tiles is a function of the time they have been in neighboring posi-
tions. We then present an implementation of our model using strand displacement
reactions on DNA tiles. Under our model, we can demonstrate and study cataly-
sis and self-replication in the tile assembly. We then study the tile complexity for
assembling shapes in our model and show that a thin rectangle of size ����� can
be assembled using 	�
�� ����� ���� ���� �

types of tiles.

1 Introduction

Self-assembly is a ubiquitous process in which small objects self-organize into larger
and complex structures. Examples in nature are numerous: atoms self-assemble into
molecules, molecules into cells, cells into tissues, and so on. Recently, self-assembly
has also been demonstrated as a powerful technique for constructing nano-scale objects.
For example, a wide variety of DNA lattices made from self-assembled branched DNA
molecules (DNA tiles) [9, 19, 21, 22, 40, 42, 43] have been successfully constructed.
Peptide self-assembly provides another nanoscale example [8]. Self-assembly is also
used for mesoscale constructions using capillary forces [7, 26] or magnetic forces [1].

Mathematical studies of tiling dates back to 1960s, when Wang introduced his
tiling model [36]. The initial focus of research in this area was towards the decid-
ability/undecidability of the tiling problem [25]. A revival in the study of tiling was
instigated in 1996 when Winfree proposed the simulation of computation [41] using
self-assembly of DNA tiles.

In 2000, Rothemund and Winfree [28] proposed the abstract Tile Assembly Model,
a mathematical model for theoretical studies of self-assembly. This model was later
extended by Adleman et al. to include the time complexity of generating specified as-
semblies [3]. Later work includes combinatorial optimization, complexity problems,
fault tolerance, and topology changes, in the abstract Tile Assembly Model as well as
in some of its variants [4–6, 10–14, 17, 18, 20, 23, 24, 27, 29, 31, 32, 34, 35, 38, 39].

In this paper, we use the term standard model to refer to the above abstract Tile
Assembly Model proposed by Winfree. For detailed description of the standard model,
see [28].�
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Roughly speaking, a tile in the standard model is a unit square where each side
of the square has a glue from a set � associated with it. In this paper we use the
terms pad and side of the tile interchangeably. Formally, a tile is an ordered quadru-
ple ����������� ����! ����"$#&%'�)( , where ��� , ��� , ��! , and ��" represent the northern, eastern,
southern, and western side glues of the tile, respectively. � also contains a special sym-
bol *�+�,-, , which is a zero-strength glue. . denotes the set of all tiles in the system. A
tile cannot be rotated. So, �-� � ����/0����12�3� ( #546 ����/2�3�71���� ( ��� � # . Also defined are vari-
ous projection functions *98:.<;=� , >?8:.@;=� , AB8:.<;=� , and CD8:.<;=� ,
where *E��� � ��� / ��� 1 �3� ( # 6 � � , >F�-� � ��� / ��� 1 �3� ( # 6 � / , A���� � �3� / ��� 1 ��� ( # 6 � 1 , andC&��� � �3� / ��� 1 ��� ( # 6 � ( .

A glue strength function GH8��JIH�J;LK determines the glue strength between two
abutting tiles. G����M�3��NO# 6 GM�-��N��3�P# is the strength between two tiles that abut on sides
with glues � and �PN . If ��46 ��N , G����M����NQ# 6SR ; otherwise it is a positive value. It is also as-
sumed that GM�-�M�T*�+M,�,-# 6SR , UM�V%W� . In the tile set . , there is a special seed tile A . There
is a system parameter to control the assembly known as temperature and denoted as X .
All the ingredients described above constitute a tile system, a quadruple Y�.Z�3A��[GM�TX7\ . A
configuration is a snapshot of the assembly. More formally, it is the mapping from ] / to._^a` b&ced�.gfih where b)ced�.gf is a special tile ��*�+�,-,[��*�+�,-,[�T*�+M,�,T�T*�+M,Q,-# , indicating
a tile is not present. For a configuration j , a tile k 6 �-� � �3� � �3� ! �3� " # is attachable
at position �Qlm�onF# iff jp��lm�onF# 6 b&ced�.gf and GM�-� � ��C&�-jp��l3�qn&rts #T#T#:ruG���� � �3A��ojp�Qlvrs2�onF#�#T#wr?GM�-� " ��>F�ojp�Qlm�on�xus #T#T#vr5G���� ! �T*E�ojp�Qlwx's2�qnF#T#T#zy�X .

Assembly takes place sequentially starting from a seed tile A at a known position.
For a given tile system, any assembly that can be obtained by starting from the seed and
adding tiles one by one, is said to be produced. An assembly is called to be terminally
produced if no further tiles can be added to it. The tile complexity of a shape { is
the size of the smallest tile set required to uniquely and terminally assemble { under
a given assembly model. One of the well-known results is that the tile complexity of
self-assembly of a square of size |DI}| in standard model is ~p�S� �3���� �3��� �3��� # [3, 28].

Adleman introduced a reversible model [2], and studied the kinetics of the reversible
linear self-assemblies of tiles. Winfree also proposed a kinetic assembly model to study
the kinetics of the self-assembly [37]. Apart from these basic models, various gener-
alized models of self-assembly are also studied [6, 16]: namely, multiple temperature
model, flexible glue model, and q-tile model.

Though all these models contribute greatly towards a good understanding of the
process of self-assembly, there are still a few things that could not be easily explained
or modeled (for example, the process of catalysis and self-replication in tile assembly).
Recently, Schulman and Winfree show self-replication using the growth of DNA crys-
tals [33], but their system requires shear forces to separate the replicated units. In this
paper we propose a new model, in which catalysis and self-replication is possible with-
out external intervention. In this new model, which is built on the basic framework of
abstract Tile Assembly Model, the glue strength between different glues is dependent
on the time for which they have remained together.

The rest of the paper is organized as follows. First we define our model formally in
Section 2. We then put forth a method to physically implement such a system in Sec-
tion 3. Then we present the processes of catalysis and self-replication in tile assembly



in our model in Sections 4 and 5, respectively. In Section 6, we discuss the tile com-
plexity of assembly of various shapes. We conclude with the discussion of our results
and future research directions in Section 7.

2 Time-Dependent Glue Model

We propose a Time-dependent Glue Model, which is built on the framework described
above. In this model, the glue-strength between two tiles is dependent upon the time for
which the two tiles have remained together.

Let X be the temperature of the system. Tiles are defined as in standard model.
However, in our model, glue strength function G is defined as GH8���I_��I}K�;LK��

In G����M���PNq�T�T# the argument � is the time for which two sides of the tiles with glue-
labels � and � N have been juxtaposed. For every pair ( �M�3� N ), the value G����M�3� N �T�T# in-
creases with � up to a maximum limit and then takes a constant value determined by �
and ��N . We define the time when G reaches this maximum as time for maximum strength,���}A : ��I_��;�K . Note G����M�3��No�T�T# 6 GM�-�M����N , ���WA ( �M���PN�#�# for ���u���}A��-�M����NQ# .

We also have a function minimum interaction time defined as ��lo��8���IW��;�K .
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Fig. 1. Figure illustrates the concept of time-dependent glue strength, minimum interaction time,
and time for maximum strength

For every pair ( �M��� N ), a function ��lq�����M�3� N # is defined as the minimum time for
which the two tiles with abutting glue symbols � and �vN stay together. If GM�-�M���PN ,��lq�����M�3��NO#T#gy9X , the two tiles will stay together; otherwise they will separate if there
is no other force holding them in their abutting positions. An example of glue-strength
function is shown in Figure 1. Intuitively speaking, mit serves as the minimum time re-
quired by the pads to decide whether they want to separate or remain joined. We further
define ��lo���-�M�T*�+M,�,o# 6�R , ���WA����M��*�+�,-,-# 6�R , and GM�-�M�T*�+M,�,T�T�T# 6�R .



Next we give the justification and estimation of mit for a pair ( �M���vN ) of glues. LetGM�-�M����No�T�T# be the glue strength function. For more realistic estimation of mit, consider a
physical system in which, in addition to association, dissociation reactions also occur.
Let ���-��# be the probability of dissociation when the bond strength is � , and �$���T# be the
probability that no dissociation takes place in the time interval � R �����[�q� . Then,�$����r�� �T# 6 �$���T#$�2�Tszx����OG��Q�Pr�� �T#�#T#$��� � ��$�Q�Pr�� �T#�$�Q�T# 6 �[szx��v�QGM���wr�� �T#�#T#$��� � �

The probability that the dissociation takes place between time � and �wru� � is given
by �$�Q�T#Z�����OG��Q��r¡� �T#T#g��� � . Since mit is defined as the time for which two glues are
expected to remain together once they come in contact, its expected value is:

ba� ��lq�q� 6£¢¥¤§¦¨[©�ª�« ¬ ©Q®�« �$���$���T#$�[���OG��Q�wr�� �T#�#$��� � �
where �v�o��# can be determined using Winfree’s kinetic model [37]. Hence, based on the
knowledge of glue strength function it is possible to determine the expected minimum
interaction time for a pair ( �M���PN ). For simplicity, we will use the expected value of mit
as the actual value of mit for a pair of glues ( �M�3� N ).

Next we illustrate the time-dependent model with an example of the addition of a
single tile to an aggregate. When a position �Qlm�onF# becomes available for the addition of a
tile k , it will stay at �Qlm�onF# for a time interval � « , where � « = max `���lq����>F�-k¯# ��C&�-jp��lm�on:rs�#T#�# , ��lq����*E��k¯#��3A��-jp��l�r�s2�onF#�#T# , ��lq���QC&�-k¯#���>F�-jp��l3�qnvx°s�#T#�# , ��lq���-A���k±# ��*E�-jp�Ql x°s��onF#T#�#mh .
Recall that our model requires that if two tiles ever come in contact, they will stay
together till the minimum interaction time of the corresponding glues.

After this time interval � « , if GM�->F��k¯#��TC&�ojp�Qlm�on²r)s #T# ��� « #�rgG��Q*E��k±# �mA��ojp�QlTr)s2�qnF#T# ��� « #3rGM��C&��k±# ��>F�ojp�Ql , n$xHs #T#��T� « #³rpGM�oA��-k¯#��T*E�-jp��l0xHs��onF#T#��T� « #µ´'X , k will detach; otherwise,k will continue to stay at position �Qlm�qn�# .
We describe in the next section a method to implement our model of time-dependent

glue strength with DNA tiles.

3 Implementation of Time-Dependent Glue Model

If the hydrogen bonds between the bases in two hybridizing DNA strands build up
sequentially, the total binding force between the two strands will increase with time
up to the complete hybridization, which will provide a simple way of obtaining time-
dependent glue strength between DNA tiles. However, even if we assume that the hy-
bridization of two complementary DNA strands is instantaneous, we can design a multi-
step binding mechanism to implement the idea of time-dependent glue strength, which
exploits the phenomenon of strand displacement.

Figure 2 (a) illustrates the process of strand displacement in which strand ¶ dis-
places strand j from strand k . Figure 2 (b) illustrates one step during this process. At
any time either the hybridization of ¶ with k (and hence dehybridization of j from
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Fig. 2. Figure (a) illustrates the process of strand displacement. Figure (b) shows a single step of
strand-displacement as single step of random walk. In (b), the numbers represent the number of
DNA base pairs

k ) or hybridization of j with k (and hence dehybridization of ¶ from k ) can pro-
ceed with 1/2 probability. Hence, we can model the strand displacement process as a
random walk, with forward direction corresponding to hybridization between ¶ and k ,
and backward direction corresponding to hybridization between j and k . To simplify
the model, we can assume that the step length in this random walk is 1 base pair long.
Hence, if the length of j is * bases, the expected number of steps required for ¶ to
replace j is * / [15].

Next we describe the design of the pads of DNA tiles with time dependent glue
using the above mechanism of strand displacement.

To make the glue between pad k and pad ¶ time-dependent, we need a construction
similar to the one in Figure 3 (a). Strand representing pad k has various smaller strands
( jµ· ’s, called protector strands) hybridized to it as shown in Figure 3 (a). Strand ¶ will
displace these protector strands j · sequentially.

The variable tms here will be the time required for ¶ to displace all the j · ’s. In
the case when there are ¸ different small strands j · of length * · attached to k , tms is¹Sº· ® � * /· .

Figure 3 gives the step by step illustration of the above process. The variation of
glue strength between k and ¶ is shown in Figure 3 (i). By controlling the length of
various jµ· ’s (i.e. * � �T*P/2����������* º ), we can control the glue-strength function G for a pair
of tile-pads (or glues). Thus, we have shown a method to render the DNA tiles the
characteristic of time-dependent glue strength.

An interesting property is that the individual strand displacement of ¶ against jZ· is
modeled as a random walk, but the complete process described above can be viewed as
roughly monotonic. As shown in Figure 3 (i), the strength of the hybridization between
strand k and strand ¶ increases in a roughly monotonic fashion with the removal of
every j · . However during the individual competition between ¶ and j · , the increase
is not monotonic.
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Fig. 3. Figures (a) to (h) illustrate a mechanism by which strand displacement reaction is used to
implement time-dependent glue between two pads. They show step by step removal of »E¼ ’s by
B from A. In Figure 3 (i) an imaginary graph illustrates the variation of glue-strength between ½
and ¾ w.r.t. time



4 Catalysis

Catalysis is the phenomenon in which an external substance facilitates the reaction of
other substances, without itself being used up in the process. The following question
was posed by Adleman [2]: can we model the process of catalysis in self-assembly
of tiles? In this section, we present a model for catalysis in self-assembly of tiles
using time-dependent glue model. Now consider a supertile ¿ (composed of two at-
tached tiles j and À ) and two single tiles k and ¶ as shown in Figure 4 (a). We
describe below how ¿ can serve as a catalyst for the assembly of k and ¶ . Assume� « 6 ��lq����>F��k±# ��C&��¶i#T# such that G���>F��k±# ��C&��¶i# �T� « # is less than the temperature X . Let��lq���-A��-k¯# ��*E�-jÁ#�# = ��lq���-A��-¶)# ��*E��ÀH#�# = � � ��� « . Also assume G��-A���k±# ��*E�-jÁ# ��� � #zrGM�oA��-¶)#��T*E��À�# �T� � #µ´'X and GM�->F��k¯#��TC&�-¶)#��T� � #µy'X .

The graph in Figure 4 (b) illustrates an example set of required conditions for the
glue strength functions in the system.
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Fig. 4. Figure (a) shows catalyst Â with the tiles C and Ã catalyzes the formation of ½�Ä0¾ .
(b) shows the conditions required for catalysis in terms of the glue strength function. Solid
line shows the plot of Å�
QÆ³
Q½ ��ÇoÈ 
Q¾ ��ÇoÉ[�

and dashed line shows the plot of Å�
�Ê 
Q½ ��Ç-Ë 
�» ��Ç�É[��ÌÅ�
�Ê 
Q¾ ��ÇqË 
QÃ ��ÇqÉ��
To show that ¿ acts as a catalyst, we first show that without ¿ stable ku��¶ can not

form. Next we show that k¡�³¶ will form when ¿ is present and ¿ will be recovered
unchanged after the formation of k���¶ .

Without ¿ in the system, k and ¶ can only be held in neighboring positions for
time � « 6 ��lo���->F��k¯#��TC&�-¶)#�# , since G���>F��k±# ��C&��¶i# �T� « #g´�X . Hence, at � « , k and ¶ will
fall apart.

However, in the presence of ¿ , the situation changes. Supertile ¿ has two neighbor-
ing tiles j and À . Tiles k and ¶ attach themselves to j and À as shown in Figure 4
(a). Since we let ��lq���oA��-k¯#��T*E�-jÁ#�# = ��lo���oA���¶)#��T*E�-ÀH#T# = � � ��� « , tiles k and ¶ are



held in the same position for time � � . By our construction, as shown in Figure 4 (b), the
following two events will occur at time � � :

– At � � , the glue strength between k and ¶ is GM�->F��k¯#��TC&�-¶)#��T� � #ÍyÎX and hencek and ¶ will be glued together. That is, in the presence of ¿ , k and ¶ remain
together for a longer time, producing stably glued k���¶ .

– At � � , the total glue strength between k�� ¶ and ¿ is G��-A���k±# �T*E�ojÁ# ��� � #�rgG��-A��-¶)# ��*E��ÀH#��T� � #µ´X , and the glued k���¶ will fall off ¿ . ¿ is recovered unchanged from the reaction
and the catalysis is complete. Now ¿ is ready to catalyze other copies of k and ¶ .

Note that if only k (resp. ¶ ) comes in to attach with j (resp. À ), it will fall off at
the end of time ��lo���oA���k¯#��T*E�ojÁ#T# (resp. ��lq���-A���¶i# �T*E�-ÀH#T# ). If assembled kp�Ï¶ comes in,
it will also fall off, at time � � . These two reactions are futile reactions, and do not block
the desired catalysis reaction. However, as the concentration of kJ��¶ increases and
the concentration of unattached k and ¶ decreases, the catalysis efficiency of ¿ will
decrease due to the increased probability of the occurrence of futile reaction betweenk���¶ and jS��À .

5 Self-replication

Self-replication process is one of the fundamental process of nature, in which a system
creates copies of itself. We discuss below an approach to model self-replication using
the time-dependent glue model.
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Fig. 5. A schematic of self-replication

Our approach is built on the above described process of catalysis: a product k¡�³¶
catalyzes the formation of je� À , which in turn catalyzes the formation of kS� ¶ . And
hence an exponential growth of self-replicated k���¶ and jS��À takes place.



More precisely, let � « ´u� � , consider tiles k , ¶ , j , and À , such that :��lq����>F��k±# �TC)��¶)#�# 6 ��lq���->��ojÁ# ��C&��ÀH#�# 6 � « ���lq���oA��-k¯#��T*E�-jÁ#�# 6 ��lq���-A��-¶)# ��*E��ÀH#�# 6 � � �G���>F��k±# ��C&��¶i# �T� « # 6 GM�->��ojÁ# ��C&��ÀH#��T� « #µ´'X��G���>F��k±# ��C&��¶i# �T� � # 6 GM�->��ojÁ# ��C&��ÀH#��T� � #µ�'X��GM�oA��-k¯#��T*E�-jÁ#��T� � #wr?GM�oA��-¶)#��T*E��À�# �T� � #µ´'X��
A system containing these four types of tiles has two states:
State 1. If there is no template k��³¶ or jt�³À in the system, no assembled super-

tile exists since no two tiles can be held together long enough to form strong enough
glue between them such that they become stably glued. Since ��lq����>F�-k¯# ��C&��¶i#T# 6��lq����>F�ojÁ# �TC)��ÀH#�# 6 � « and G���>F��k±# ��C&��¶i# �T� « # 6 G���>F�-jÁ#��TC&�-ÀH# ��� « #Á´¡X , neither sta-
ble k}��¶ nor stable jÍ��À can form. Similarly, ��lq���-A���k±# �T*E�ojÁ#T# 6 ��lo���oA���¶)#��T*E�-ÀH#T# 6� � , G��-A��-k¯# ��*E�-jÁ#��T� � #µ´uX , and G��-A���¶i# ��*E��ÀH#��T� � #µ´'X implies that neither stable k���j
nor stable ¶e��À can form.

State 2. In contrast, if there is an initial copy of stable ke��¶ in the system, self-
replication occurs as follows. k¡�³¶ serves as catalyst for the formation of je�³À , andj��[À and kB�[¶ separate from each other at the end of the catalysis period, as described
in Section 4; in turn, j¡��À serves as catalyst for the formation of k���¶ . Thus we have
a classical self-replication system: one makes a copy of itself via its complement. The
number of the initial template ( k���¶ ) and its complement ( j���À ) grows exponentially
in such system.

Hence, if the system is in state 1, it needs a triggering activity (formation of an
stable k���¶ or j¡��À ) to go into state 2. Once the system is in state 2, it starts the self-
replication process. Figure 5 illustrates the process of self-replication in the assembly
of tiles.

If the system is in state 1, then the triggering activity (formation of an stable k���¶
or j'� À ) can take place only if k , ¶ , j , À co-position themselves so that the east side
of k faces the west side of ¶ and the south side of k faces the north side of j , and
at the same time the south side of ¶ faces the north side of À . In such a situation, k
and j will remain abutted till time � � , ¶ and À will remain abutted till time � � , and k
and ¶ (and j and À ) might also remain together for time � � , producing stable kt�0¶
and stable jÐ�0À . And this will bring the system to state 2. But such copositioning of
4 tiles is a very low probability event. Thus a very low probability event can perturb
a system in state 1 and triggers tremendous changes by bringing the system to state 2
where self-replication occurs.

6 Tile Complexity Results

In the standard model, the tile complexity of assembling an |�I�| square is ~p�t� �3���� ����� �3��� #
[3, 28]. It is also known that the upper bound on the tile complexity of assembling a¸_I5| rectangle in the standard model is Ñp�o¸pr�| �TÒ º # and that the lower bound on
tile complexity of assembling a ¸_IB| rectangle is Ói� �zÔoÕ�Öº # [6]. For small values of



¸ this lower-bound is asymptotically larger than Ñp� � �3�7�� ���²� �3��� # . Here we claim that, in
our model, as in the multi-temperature model defined in [6], a ¸}IW| rectangle can be
self-assembled using Ñp� � �3���� �3�²� ����� # types of tiles, even for small values of ¸ . The proof
technique follows the same spirit as in [6].

Theorem 1. In time-dependent glue model, the tile complexity of self-assembling a ¸¯I| rectangle for an arbitrary integer ¸�y�× is Ñp�S� ���7�� �3�²� �3��� # .
Proof. The tile complexity of self-assembling a ¸°I�| rectangle is Ñp�-| ÔÖ r�¸ ) for the
standard model [6]. In time dependent glue model, we can use the similar idea as in [6]
to reduce the tile complexity of assembling thin rectangles. For given ¸ and | , build anHI_| rectangle with n_�t¸ such that the glues among the first ¸ rows become strong
after their mit (minimum interaction time), while the glues among the last npxu¸ rows
do not become as strong. As such, these nix'¸ rows, referred to as volatile rows, will
fall apart after certain time and produce the target ¸�I}| rectangle.

The tile set required to accomplish this construction is shown in Figure 6, which is
similar to the one used in [6]. For more detailed illustration of this tile set, refer to [6].
First, a n -digit � -base counter is assembled as follows. Starting from the west edge of
the seed tile, a chain of length � is formed in the first row using � chain tiles. At the
same time tiles in the seed column also start assembling. It should be noted that first ¸
tiles in the seed column have sufficient glue-strength and they are stable. Now starting
from their west edges, the R normal tiles start filling the �Îx¡s columns in the upper
rows. Then the hairpin tiles ØÍÙ� and Ø_Ú� assemble in the second row, which causes
the assembly of further � chain tiles in the first row, and the assembly of 1 normal
tiles in the second row (and 0 normal tiles in the upper rows) in the next section of �
columns. Generally speaking, whenever a jzÛ¯Ü � chain tile is assembled in the first row,
probe tiles in the upper rows are assembled until reaching a row that does not contain
an �Ýx5s normal tile. In such a row, the appropriate hairpin tiles are assembled and this
further propagates the assembly of return probe tiles downwards until the first row is
reached, where a j « chain tile gets assembled. This again starts an assembly of a chain
of length � . The whole process is repeated until a naI���Þ rectangle is assembled.

Next we describe our modifications which are required for the n�x�¸ upper volatile
rows to get disassembled after the complete assembly of the nHI��}Þ rectangle. First of
all we need to have a special �o¸±r�s�# -th row ( ß2ß row), which will assemble to the north
of the ¸ -th row ( ß row), as shown in Figure 6.

The operating temperature X 6 × . Assume that for all glue-types, ��lq� 6 � « and���}A 6 � � . There are three kinds of glues shown in Figure 6: black, gray, and dashed.
Assume that the glue-strength function for a single black glue is G black �Q�T# , a single gray
glue is G gray �Q�T# , and a single dashed glue is G dashed �Q�T# . They are defined as

G black �Q�T# 6áàâ ã ( ©ä ©Qå �µ´u� «(ä r © Ü ©Qåä�æ © Ô Ü © åTç � «Áè ��´'� �s �µyu� �
G gray ���T# 6áàâ ã / ©ä © å �µ´u� «/ä r © Ü © å� « æ © Ô Ü ©Qå ç � « è ��´'� ��/ �µyu� �



rggp g

c
0c

1
c

2
c

m-1
c

m-2 c
i+1

c
i

c
0

S 0

S 1

S k-2

S k-1

S k

S 'k+1

S 'j-1H H

H H

H H

i'

i

i

P'R'

P

P

R

R

C 0C 1
C iCm-2

Cm-1

s 1

s 2

s k-2

s k-1

s k

s k+1

s k+2

s j-1

p

r' p'

r

d

u

u

u

u

u

u

c
1

u 

u

u 

u **

u '

u '

p'

p

p

p

p'r'

r'

r

r

r

g g

pr

p**
r**

g'g'

g** g**

g'

g'

g**

g

g

g

u 'i u 'i

u i

u i
* u i

*

u i
'

u 0
*

u 0
'

u i

u i

u i
*

u 0

i-1
'

m-1

m-1
'

i-1
*

m-1
*

i-1

hi

hi

*

hi
'

0
* d

0
*

d
0

d
0

d
0
'

d
0
'

0

*
*

0

0

0

0

0

*

i

*

P

R' P'

*R

*

*

PR
ii

ii

i

**H H

i

PR
d

u

u

p

p

r

r

p'r'

g' g'

g'

g**

u i
** u i

**

u 0
**

u i
**

i-1
**

m-1
**

hi
**

0
** d

0
**

**

**

P**R

**

**

ii

s k

**

****

**

Hairpin Tiles, 

Return probes and Probes

Seed ColumnNormal Tiles

Seed Tile

Chain Tiles

* row

** row
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tiles. The glue strength

functions of gray, dashed, and black glues are defined in the proof



G dashed �Q�T# 6îí / ©ä © å ��´'� «/ä ��y'� «
Multiple glues shown on the same side of a tile in Figure 6 are additive. For example,

the glue strength between jï· and jµ·§ð � ( R è l è ��x?× ) is × G black ���T#wr5G gray �Q�T# .
This system will start assembling like a base | �TÒ Þ counter of n digits, as briefed

above and detailed in [3, 6]. It will first construct a rectangle of size n$I�| using | ��Ò Þ0rZn
type of tiles. Once the rectangle is complete, the tile on the north-west corner will start
the required disassembly of the upper �§ngx_¸�# volatile rows, which results in the forma-
tion of a ¸_I_| rectangle. We call these two phases Assembly phase and Disassembly
phase respectively, and describe them below.

Assembly Phase:
In the Assembly Phase, we aim at constructing a ngIÁ| rectangle. In the time dependent
model, the assembly proceeds as in the standard model until the assembly of d°ñ tile in
the ¸ -th row ( ß row). At this point, an ØVÚwò[ò tile is required to get assembled. However,
when the Ø_Úwò[ò tile is assembled in the �o¸Ár�s�# -th row, the total support on ØBÚwò[ò from
its east neighbor is only ( ä r /ä ´'× at the end of ��lq� . Thus ØÍÚwò[ò must obtain additional
support; otherwise it will get disassembled, blocking the desired assembly process. The
additional support comes both from its south neighbor and its west neighbor. (1) On
the south front, tile ó&ñ can arrive and be incorporated in the ¸ -th row ( ß row) of the
assembly. It holds Ø Úwò[ò for another time interval of ��lq� and provides a support of /ä .
Further note that during this second interval, an ó tile can be assembled in the �o¸Hxs�# -th row, and the ó�ñ tile in the ¸ -th row will then have support 2 at mit and hence
stay attached. In addition, tile ó has support 2 at mit, so it will also stay attached.
Regarding ØÍÚwò[ò , the end result is that it receives an additional stable support /ä from
its south neighbor. However, the maximum support from both the south and the east
is at most s�r �/ r /ä , which is still less than X 6 × . Fortunately, additional rescue
comes from the west. (2) On the west front, an l3ñmñ tile can get attached to ØÍÚwò[ò , and
stabilize it by raising its total support above × . However, this support is unstable, or
volatile, in the sense that l�ñ3ñ itself needs additional support from its own west and south
neighbors to stay attached. If this support can not come in time, that is, before mit, l ñ3ñ
will get disassembled, in turn causing the disassembly of ØBÚwò[ò . The key observation
here is that this assembly/disassembly is a reversible dynamic process: the disassembly
may stop and start going backwards (i.e. assembling again) at any point. Thus in a
dynamic, reversible fashion, the target structure of the Assembly Phase, namely then°I}| rectangle, can be eventually constructed.

The above added complication is due to the fact that we require the Ø Úwò[ò tiles in the�-¸�rSs�# -th row to get a total support of ´�× from the south and the east. This is crucial
because during the subsequent Disassembly Phase (as we describe next) the desired
disassembly can only carry through if the total support of each volatile tile from the
south and the east is ´'× .

Disassembly Phase:
In the Disassembly Phase, we will remove the nix�¸ volatile rows, and reach the final
target structure, a ¸�I}| rectangle. Once the naI}| rectangle is complete, the tile . at
the north-west corner ( d�N tile in the n -th row) initiates the disassembly. When the mit of
the glue-pairs between tile . and its neighbors is over, tile . will get detached because



the total glue strength that it has accumulated is ( ä r /ä ´¡X 6 × . Note that, unlike the
above case for ØÍÚwòTò , no additional support can come from the west for tile . since .
is the west-most tiles. As such, . is doomed to get disassembled. With . gone, . ’s east
neighbor will get removed next, since it now has a total glue strength è sgr �/ ´JX .
Similarly, all the tiles in this row will get removed one by one, followed by the removal
of the tiles in the next row (south row). Such disassembly of the tiles continues until we
are left with the target rectangle of size ¸aIH| , whose constituent tiles, at this stage, all
have a total glue strength no less than X 6 × , and hence stay stably attached.

Note that, similar as in the Assembly Phase, the volatile tiles that just got removed
might come back. But again, ultimately they will have to all fall off (after the mit), and
produce the desired ¸�I�| rectangle.

Concluding the Proof:
We can construct a ¸pIa| rectangle using Ñp��| ��Ò Þ r}n�# type of tiles (where n°��¸ ). As
in [6], it can be reduced to Ñp�S� ������ ���7� �3��� # by choosing n 6 � ������ �3�²� �3��� Ü � �3�²� �3�²� ����� . ô

1

2

3

4Connector

      Tiles

k

k

seed

Fig. 7. Direction of the gray arrow shows the direction of construction of a square with a hole,
starting from the indicated seed

Thin rectangles can serve as building blocks for the construction of many other
interesting shapes. One example is a square of size |�I}| with a large square hole of
size ¸ÍIV¸W�o¸Bõî|V# . Under the standard model, the lower bound can be shown to beÓi� æ º ç�ö÷vø Ö� Ü º # by a lower bound argument similar to the one in [6]. Note that as |ùxu¸
decreases, i.e. the square hole in the square increases, the lower bound increases. In the
case when |ùx�¸ is smaller than � �3���� �3�²� ���7� Ü � �3�²� ���²� �3��� , the lower bound is more than� �3���� �3�²� ����� . In the case when |Lx�¸ is a small constant, the complexity is almost |5ú ,
where û is some constant ´Ýs . However, in time-dependent model, the tile complexity
of this shape can be reduced to Ñp�¡� ��� º� ���²� �3� º # even for small values of |üx�¸ , using our
thin rectangle construction.

The basic idea is quite simple. We sequentially grow four different � � Ü º ÜM// #&I�-¸�ru×2# rectangles that will make up the major part of the square’s sides. To enable the
sequential growth of these rectangles, we introduce four connector tiles that concatenate



them. After the completion of one rectangle the connector tile will assemble and provide
basis for the assembly of the subsequent rectangle. Finally, some more constant type of
tiles will be introduced to fill in the gaps at the four corners this |üIa| square, and the
gap between two subsequent connector tiles, producing the target |<Ip| square with a¸HIW¸ hole.

The upper bound on the number of tiles is exactly the same as the upper bound for
constructing the four thin rectangles, which is Ñp�t� ��� º� �3�²� �3� º # .
7 Discussion and Future Work

In this paper, we define a model in which the glue strength between tiles depends upon
the time they have been abutting each other. Under this model, we demonstrate and
analyze catalysis and self-replication, and show how to construct a thin ¸±I�| rectangle
using Ñp� � �3���� ���²� �3��� # tiles. The upper bound on assembling a thin rectangle is obtained
by applying similar assembly strategy as in the multi-temperature model [6]. Thus, an
interesting question is whether the multi-temperature model can be simulated using
our time-dependent model. We also want to further investigate if under our model the
lower bound of Óp��� ������ �3�²� �3�7� # for the tile complexity of an |DI}| square can be further
improved.

Another interesting direction is to study the kinetics of the catalysis and self-replication
analytically. Winfree’s kinetic model [37] can be used to study them, but the challenge
here is that the rate constant for the dissociation for a particular species varies with time
because of changing glue strengths of its bonds. This makes the analytical study hard.
However, these catalytic and self-replicating systems can be modeled as a continuous
time markov chain, and studied using computer simulation to obtain empirical results.
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