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Abstract. Self-assembly is a process in which small objects autonomously as-
sociate with each other to form larger complexes. It is ubiquitous in biologi-
cal constructions at the cellular and molecular scale and has also been identi-
fied by nanoscientists as a fundamental method for building nano-scale struc-
tures. Recent years see convergent interest and efforts in studying self-assembly
from mathematicians, computer scientists, physicists, chemists, and biologists.
However most complexity theoretic studies of self-assembly utilize mathemati-
cal models with two limitations: 1) only attraction, while no repulsion, is studied;
2) only assembled structures of two dimensional square grids are studied. In
this paper, we study the complexity of the assemblies resulting from the cooper-
ative effect of repulsion and attraction in a more general setting of graphs. This
allows for the study of a more general class of self-assembled structures than
the previous tiling model. We define two novel assembly models, namely the ac-
cretive graph assembly model and the self-destructible graph assembly model,
and identify one fundamental problem in them: the sequential construction of
a given graph, referred to as Accretive Graph Assembly Problem (AGAP) and
Self-Destructible Graph Assembly Problem (DGAP), respectively. Our main re-
sults are: (i) AGAP is ��� -complete even if the maximum degree of the graph
is restricted to 4 or the graph is restricted to be planar with maximum degree 5;
(ii) counting the number of sequential assembly orderings that result in a target
graph (#AGAP) is ��� -complete; and (iii) DGAP is �
	��
���
� -complete even
if the maximum degree of the graph is restricted to 6 (this is the first �
	��
����� -
complete result in self-assembly). We also extend the accretive graph assembly
model to a stochastic model, and prove that determining the probability of a given
assembly in this model is ��� -complete.

1 Introduction

Self-assembly is the ubiquitous process in which small objects associate autonomously
with each other to form larger complexes. For example, atoms can self-assemble into
molecules; molecules into crystals; cells into tissues, etc. Recently, self-assembly has
also been explored as a powerful and efficient mechanism for constructing synthetic
molecular scale objects with nano-scale features. This approach is particularly fruitful
�

The work is supported by NSF ITR Grants EIA-0086015 and CCR-0326157, NSF QuBIC
Grants EIA-0218376 and EIA-0218359, and DARPA/AFSOR Contract F30602-01-2-0561.



in DNA based nanoscience, as exemplified by the diverse set of DNA lattices made from
self-assembled branched DNA molecules (DNA tiles) [9, 15, 23, 25, 30, 43, 44]. An-
other nanoscale example is the self-assembly of peptide molecules [8]. Self-assembly
is also used for mesoscale construction, for example, via the use of capillary forces [29]
or magnetic forces [1] to provide attraction and repulsion between mesoscale tiles and
other objects.

Building on classical Wang tiling models [40] dating back to 1960s, Rothemund and
Winfree [31] in 2000 proposed an elegant discrete mathematical model for complexity
theoretic studies of self-assembly known as the Tile Assembly Model. In this model,
DNA tiles are treated as oriented unit squares (tiles). Each of the four sides of a tile has
a glue with a positive integral strength. Assembly occurs by accretion of tiles iteratively
to an existing assembly, starting with a distinguished seed tile. A tile can be “glued”
to a position in an existing assembly if the tile can fit in the position such that each
pair of abutting sides of the tile and the assembly have the same glue and the total
strength of the glues is greater than or equal to the temperature, a system parameter.
Research in this field largely focuses on studying the complexity of and algorithms for
(uniquely and terminally) producing assemblies with given properties, such as shape. It
has been shown that the construction of ����� squares has a program size complexity (the
minimum number of distinct types of tiles required) of ����� ���� � �!�"� ���# 

$
[3, 31]. The upper

bound is obtained by simulating a binary counter and the lower bound by analyzing
the Kolmogorov complexity of the tiling system. The model was later extended by
Adleman et al. to include the time complexity of generating specified assemblies [3].
Later work studies various topics, including combinatorial optimization, complexity
problems, fault tolerance, and topology changes, in the standard Tile Assembly Model
as well as some of its variants [4, 6, 10–14, 19, 27, 33–38, 41, 42].

Though substantial progress has been made in recent years in the study of self-
assembly using the above tile assembly model, which captures many important aspects
of self-assembly in nature and in nano-fabrications, the complexity of some other im-
portant aspects of self-assembly requires further study:

– Only attraction, while no repulsion, is studied. However, repulsive forces often oc-
cur in self-assembly. For example, there is repulsion between hydrophobic and hy-
drophilic tiles [7, 29]; between tiles labeled with magnetic pads of the same polar-
ity [1]; and there is also static electric repulsion in molecular systems, etc.. Indeed,
the study of repulsive forces in the self-assembly system was posed as an open
question by Adleman and colleagues in [3]. Though there has been previous work
on the kinetics of such systems [20], no complexity theoretic study has been di-
rected towards such systems.

– Tile Assembly Model captures well assembled structures of two dimensional square
grids, but are not well adaptable to study assemblies of general graph structure.
However, many molecular self-assemblies using DNA and other materials involve
the assembly of more diverse graph-like structures in both two and three dimen-
sions. Pioneer work in modeling DNA self-assembly as graphs include [16–18, 32].
In particular, Jonoska et al studied the computational capacity of the self-assembly
of realistic DNA graphs and showed that 3SAT and 3-colorability problems can be
solved in constant laboratory steps in theory [16–18]. In addition, Seeman’s group



have experimentally constructed topoisomers of self-assembled DNA graphs [32].
Klavins showed how to produce desired topology of self-assembled structures with
planar graph structure using graph grammars [21, 22].

In this paper, we study the cooperative effect of repulsion and attraction on the
complexity of the self-assembly system in a graph setting. This approach thus allows
the study of a more general class of assemblies.

We distinguish two systems, namely the accretive system and the self-destructible
system. In an accretive system, an assembled component cannot be removed from the
assembly. In contrast, in the self-destructible system, a previously assembled compo-
nent can be “actively” removed from the assembly by the repulsive force exerted by
another newly assembled component. In other words, the assembly can (partially) de-
struct itself. We define the accretive graph assembly model for the former and the self-
destructible graph assembly model for the latter.

We first define an accretive assembly model and study a fundamental problem in
this model: the sequential construction of a given graph, referred to as Accretive Graph
Assembly Problem (AGAP). Our main result for this model is that AGAP is %'& -
complete even if the maximum degree of vertices in the graph is restricted to 4; the
problem remains %'& -complete even for planar graphs (planar AGAP or PAGAP)
with maximum degree 5. We also prove that the problem of counting the number of
sequential assembly orderings that lead to a target graph (#AGAP) is (�& -complete.
We further extend the AGAP model to a stochastic model, and prove that determining
the probability of a given assembly (stochastic AGAP or SAGAP) is ()& -complete.

If we relax the assumption that an assembled component always stays in the as-
sembly, repulsive force between assembled components can cause self-destruction in
the assembly. Self-destruction is a common phenomenon in nature, at least in biologi-
cal systems. One renowned example is apoptosis, or programmed cell death [39]. Pro-
grammed cell death can be viewed as a self-destructive behavior exercised by a multi-
cellular organism, in which the organism actively kills a subset of its constituent cells
to ensure the normal development and function of the whole system. It has been shown
that abnormalities in programmed cell death regulation can cause a diverse range of dis-
eases such as cancer and autoimmunity [39]. It is also conceivable that self-destruction
can be exploited in self-assembly based nano-fabrication: the components that serve to
generate intermediate products but are unnecessary or undesirable in the final product
should be actively removed.

To the best of our knowledge, our self-destructible graph assembly model is the first
complexity theoretic model that captures and studies the fundamental phenomenon of
self-destruction in self-assembly systems. Our model is different from previous work on
reversible tiling systems [2, 5]. These previous studies use thermodynamic or stochastic
techniques to investigate the reversible process of tile assembly/disassembly: an assem-
bled tile has a probability of “falling” off the assembly in a kinetic system. In contrast,
our self-destructible system models the behavior of a self-assembly system that “ac-
tively” destructs part of itself.

To model the self-destructible systems, we define a self-destructible graph assembly
model, and consider the problem of sequentially constructing a given graph, referred to
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Fig. 1. An example of graph assembly in the accretive model

as the Self-Destructible Graph Assembly Problem (DGAP). We prove that DGAP is
&�34&6587)9 -complete even if the graph is restricted to have maximum degree 6.

The rest of the paper is organized as follows. We first define the accretive graph
assembly model and the AGAP problem in Section 2. In this model, we first show the
%'& -completeness of AGAP and PAGAP (planar AGAP) in Section 3 and then show
the (�& -completeness of SAGAP (stochastic AGAP) in Section 4. Next, we define the
self-destructible graph assembly model and the DGAP problem in Section 5 and show
the &�34&6587)9 -completeness of DGAP in Section 6. We close with a discussion of our
results in Section 7.

2 Accretive Graph Assembly Model

Let : and ; denote the set of natural numbers and the set of integers, respectively. A
graph assembly system is a quadruple <>=>?A@B=C�ADFE!G $ EIHKJLEIM�EIN�O , where @B=B�PDQE�G $
is a given graph with vertex set D and edge set G , HKJ�R'D is a distinguished seed vertex,
MTSUGWVX; is a weight function (corresponding to the glue function in the standard tile
assembly model [31]), and NYRZ: is the temperature of the system (intuitively temper-
ature provides a tunable parameter to control the stability of the assembled structure).
In contrast to the canonical tile assembly model in [31], which allows only positive
edge weight, we allow both positive and negative edge weights, with positive (resp.
negative) edge weight modeling the attraction (resp. repulsion) between the two ver-
tices connected by this edge. We will see that this simple extension makes the assembly
problem significantly more complex.

Roughly speaking, given a graph assembly system <T=B?[@�E!H\JLEIM]E!N�O , @ is sequen-
tially constructible if we can attach all its vertices one by one, starting with the seed
vertex; a vertex ^ can be assembled if the support to it is equal to or greater than the
system temperature N , where support is the sum of the weights of the edges between ^
and its assembled neighbors.

Figure 1 gives an example. Here the temperature is set to 2. If _ gets assembled
before ` , then the whole graph can get assembled: an example assembly ordering can
be acbed�bgfhbjikbmlZbonpbm_qberFbg` . In contrast, if vertex ` gets assembled before
_ , the graph cannot be assembled: _ can be assembled only if it gets support from both
n and r ; while r cannot get assembled without the support from _ .

Formally, given a graph assembly system <W=W?A@�EIHKJLE!M]EIN�O , @ is sequentially con-
structible if there exists an ordering of all the vertices in D , s)tu=v�wHUJ]=WHyxpbzH � b
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Fig. 2. A graph construction corresponding to an AGAP reduction from 3SAT formula � ~����~ � �h~ ���\� � �~ � � �~ � �h~ ���"� � ~ � � �~ � ��~ ��� . An edge between two literal vertices is depicted as
a dashed arch and assigned weight -1; all other edges have weight 2

H���b�������b�H  \� �
$

such that ���!���U� ��¡¢��£w¤¦¥ §�¨ª©�M��[H © EIH § $p« N#E!¬j­®r8¯®�±°�² , where³�´ �[H © $ denotes the set of vertices adjacent to H © in @ . The ordering s]t is called an
assembly ordering for @ . µ�¶��wH © $ = � � � �U� � ¡¢� £ ¤¦¥ §�¨ª©yM��wH © E!H § $ is called the support
of H © in ordering s . When the context is clear, we simply use s and µ��wH © $ to denote
assembly ordering and support, respectively.

We define the accretive graph assembly problem as follows,

Definition 1. Accretive Graph Assembly Problem (AGAP): Given a graph assem-
bly system <B=>?[@�E!HUJLE!M]EIN�O in the accretive model, determine whether there exists an
assembly ordering s for @ .

The above model is accretive in the sense that once a vertex is assembled, it cannot
be “knocked off” by the subsequent assembly of any other vertex. If we relax this
assumption, we will obtain a self-destructible model, which is described in Section 5.

3 AGAP and PAGAP are ·�¸ -complete

3.1 4-DEGREE AGAP is %'& -complete

Lemma 1. AGAP is in %'& .

Proof. Given an assembly ordering of the vertices, sequentially check whether each
vertex can be assembled. This takes polynomial time. ¹
Recall that the %'& -complete 3SAT problem asks: Given a Boolean formula º in con-
junctive normal form with each clause containing 3 literals, determine whether º is sat-
isfiable [26]. 3SAT remains %'& -complete for formulas in which each variable appears
at most three times, and each literal at most twice [26]. We will reduce this restricted
3SAT to AGAP to prove AGAP is %'& -hard.

Lemma 2. AGAP is %'& -hard.

Proof. Given a 3SAT formula º where each variable appears at most three times, and
each literal at most twice, we will construct below an accretive graph assembly system



<»=®?[@�E!HUJLEIM�EIN�O for º . We will then show that the satisfiability problem of º can be
reduced (in logarithmic space) to the sequential constructibility problem of @ in < .

For each clause in º , construct a clause gadget as in Figure 2. For each literal, we
construct a literal vertex (colored white). We further add top vertices (black) above and
bottom vertices (black) below the literal vertices. We next take care of the structure
of formula º as follows. Connect all the clause gadgets sequentially via their top ver-
tices as in Figure 2; connect two literal vertices if and only if they correspond to two
complement literals. This produces graph @ . Designate the leftmost top vertex as the
seed vertex H J . We next assign weight °¼² to an edge between two literal vertices and
weight ½ to all the other edges. Finally, set the temperature NZ=B½ . This completes the
construction of <B=T?A@�EIH¾JLE!M]EIN�O .

The following proposition implies the lemma.

Proposition 1. There is an assembly ordering s for < if and only if º is satisfiable.

¿
First we show that if º can be satisfied by truth assignment À , then we can derive an
assembly ordering s based on À .

Stage 1. Starting from the seed vertex, assemble all the top vertices sequentially.
This can be easily done since each top vertex will have support 2, which is greater than
or equal to Np=�½ , the temperature.

Stage 2. Assemble all the literal vertices assigned ÁÃÂ}Äª` . Since two ÁÃÂ}Äª` literals
cannot be complement literals, no two literal vertices to be assembled at this stage can
have a negative edge between them. Hence all these ÁÃÂLÄ�` literal vertices will receive a
support 2 (

« Np=�½ ).
Stage 3. Assemble all the bottom vertices. Note that truth assignment À satisfies º

implies that every clause in º has at least one ÁÃÂLÄª` literal. Thus every clause gadget in
@ has at least one literal vertex (a ÁÃÂLÄª` literal vertex) assembled in stage 2, which in
turn allows us to assemble the bottom vertex in that clause gadget.

Stage 4. Assemble all the remaining literal vertices (the lªa\ÅAÆ}` literal vertices). Ob-
serve that any remaining literal vertex H has support Ç from its already assembled neigh-
boring top vertex and bottom vertex and that H can have negative support at most °
½
from its assembled literal vertex neighbors (recall that each literal vertex can have at
most two literal vertex neighbors since each variable appears at most three times in º ).
Hence the total support for H will be at least ½ (

« N ).È
Suppose that there exists an assembly ordering s , then we can derive a satisfying truth
assignment À for º . For each literal vertex, assign its corresponding literal ÁÃÂ}Äª` if it
appears in s before all of its literal vertex neighbors (this assures no two complement
literals are both assigned ÁÃÂLÄª` ); otherwise assign it lªaKÅPÆ}` .

To show À satisfies º , we only need to show every clause contains at least one
ÁÃÂ}Äª` literal. For contradiction, suppose there exists a clause gadget É with three lªa\ÅPÆ�` lit-
eral vertices, where H is the literal vertex assembled first. However, H cannot be assem-
bled: it has support ½ from the top vertex; no support from the bottom vertex ( H gets
assembled first and hence the bottom vertex in É cannot be assembled before H ); at least
°¼² negative support from one of its literal vertex neighbors ( H is assigned lªa\ÅAÆ}` ); the
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Fig. 3. (a) and (b) show an example bipartite graph Õ and the corresponding graph Ö used in the
proof of Lemma 4, respectively. In (b), 0�× ’s denote connector vertices (colored white); Ø � is the
seed vertex. The weight of an edge connecting two connector vertices (dashed line) is ÙQÚ ; the
weight of any other edge is Û

total support of H is thus at most ² , less than temperature Nq=T½ . Contradiction. Hence
À must satisfy º . ¹

We note that the technique of translating 3SAT formula into graph structure by
modeling variables as vertices and connecting complement literals is a classical tech-
nique [26], and has also been used powerfully in other different graph self-assembly
context [18].

The following theorem follows immediately from Lemma 1 and Lemma 2.

Theorem 1. AGAP is %'& -complete.

Let Ü -DEGREE AGAP be the AGAP in which the largest degree of any vertex in
graph @ is Ü . Observe that the largest degree of any vertex in the graph construction in
the proof of Lemma 2 is Ç . Hence we have

Corollary 1. 4-DEGREE AGAP is %'& -complete.

3.2 5-DEGREE PAGAP is %'& -complete

We next study the planar AGAP (PAGAP) problem, where the graph @ in the assembly
system < is planar. Here, we show PAGAP is %'& -hard by a reduction from the %'& -
hard planar three-satisfiability problem (P3SAT) [24]. The reduction is in similar spirit
as that in the proof of Lemma 1. For lack of space, we skip the proof and only state our
results.

Theorem 2. PAGAP is %'& -complete.

Corollary 2. 5-DEGREE PAGAP is %'& -complete.

4 #AGAP and SAGAP are ÝT¸ -complete

4.1 #AGAP is Þß& -complete

We now consider a more general version of AGAP: given an accretive graph assembly
system <à=à?A@�EIHUJyEIM]E!N�O and a target vertex set D�áqâ�D , determine if there exists



an ordering ãsc�ADFE�D�á $ of D such that D�á is assembled after we attempt assembling each
vertex HkRYD sequentially according to ãs . Vertex H will be assembled if there is enough
support; otherwise it will not. ãs is called the assembly ordering of D for D�á . When the
context is clear, we simply call it assembly ordering for D á and denote it by ãs . Note that
the assembly ordering ãs is an ordering on all the vertices in D , but we only care about
the assembly of the target vertex set D á : the assembly of vertices in DTä�D á is neither
required nor prohibited. For D á =TD , the general AGAP is then precisely the standard
AGAP. The problem of counting the number of assembly orderings for D á âuD under
this general AGAP model is referred to as #AGAP.

Lemma 3. #AGAP is in ()& .

We next show #AGAP is ()& -hard, using a reduction from the ()& -complete prob-
lem PERMANENT, the problem of counting the number of perfect matchings in a
bipartite graph [26].

Lemma 4. #AGAP is (�& -hard.

Proof. Given a bipartite graph å�=æ�Pç�E�DFE!G $ with two partitions of vertices ç and D
and edge set G , where çC=Cè}Ä � E�é�é�é�E!Ä  

ê
, D®=Cè}H � E�é�é�é�EIH  

ê
, and G�=æè}` � E�é�é�é�E!`Lë ê

(recall that by definition of bipartite graph, there is no edge between any two vertices
in ç and no edge between any two vertices in D ), we construct an assembly system
<X=X?A@�EIHUJLE!M]EIN�O . First, we derive graph @ by adding vertices and edges to å (see
Figure 3 for an example): on each edge `Uì , add a splitting connector vertex f�ì ; add an
edge (dashed line) between two connector vertices if they share a same neighbor in ç ;
connect Ä © and Ä ©îí � for rQ=>²¾E�é�é�é�E!�'°e² . Next, assign weight °�Ç to an edge between
two connector vertices; assign weight ½ to all the other edges. Finally, designate Ä � as
the seed vertex H J , and set the temperature N8=�½ . The target vertex set D á is çðïjD .

A crucial property of @ is that the assembly of one connector vertex f will make
all of f ’s connector vertex neighbors unassemblable, due to the negative edge connect-
ing f and its neighbors. Thus, starting from a vertex Ä�R�ç , only one connector ver-
tex and hence only one HkRqD can be assembled. For a concrete example, see Figure 3
(b): starting from Ä � , if we sequentially assemble f � and H � , vertex f � will render f��
unassemblable, and hence the assembly sequence Ä � bef��hbeH�� is not permissible.

We first show that if there is no perfect matching in å , there is no assembly ordering
for ç ï D . If there is no perfect matching in å , there exists ñ�âTD s.t. ò ³ �Añ $ òª­Cò ñóò
(Hall’s theorem), where

³ �Pñ $ âôç is the set of neighboring vertices to the vertices
in ñ in original graph å . However, as argued above, one vertex in ç can lead to the
assembly of at most one vertex in D . Thus ò ³ �Pñ $ ò"­zò ñóò implies that at least one vertex
in ñ remains unassembled. Hence, no assembly ordering exists that can assemble all
vertices in ç ï D .

Next, when there exists perfect matching(s) in å , we can show that each perfect
matching in å corresponds to a fixed number of assembly orderings for çoïjD . First
note that the total number of vertices in graph @ is ½y�]õZö (recall that ö is the number
of edges in å and hence the number of connector vertices in @ ), giving a total ÆZ=
�A½y��õ�ö $�÷ permutations. We divide Æ by the following factors to get the number of
assembly orderings for ç ï D .



1. For every matching edge `Uì between ÄYRYç and HkRYD , we have to follow the strict
order Äðbzf�ìcbøH , where f�ì is the connector vertex on `�ì . This is ensured by our
construction as argued above. There are altogether � such matching edges. So we
need to further divide Æ by �Aù ÷ú$  .

2. For the � vertices in ç , we have to follow the strict order of assembling the vertices
from left to right, and hence we need to divide Æ by � ÷ .

3. Denote by i © the degree of Ä © in graph å . For the i © connector vertices corre-
sponding to the i © edges incident on Ä © , the connector vertex corresponding to the
matching edge must be assembled first, and thus, we need to further divide Æ byû  ©¢ü � i © .
Putting together 1), 2), and 3), we have that each perfect matching in å corresponds

to
¡ �  í ë ¤Aý¡¢þ�ý ¤wÿ"¡  ý ¤¦¡�� ÿ£��\Ñ�� £[¤ assembly orderings for ç ï D in @ . ¹

Lemma 3 and Lemma 4 imply

Theorem 3. #AGAP is ()& -complete.

4.2 SAGAP is Þß& -complete

An intimately related question to counting the total number of assembly orderings is
the problem to calculate the probability of assembling a target structure in a stochastic
setting. We next extend the accretive graph self-assembly model to stochastic accretive
graph self-assembly model. Given a graph @»= �ADFE!G $ , where ò Dpò�=>� , starting with
the seed vertex H J , what is the probability that the target vertex set D á â D gets as-
sembled if anytime any unassembled vertex can be picked with equal probability? This
problem is referred to as stochastic AGAP (SAGAP).

Since any unassembled vertex has equal probability of being selected and the as-
sembly has to start with the seed vertex, the total number of possible orderings are
�w�Y°m² $�÷ . Then SAGAP asks precisely how many of these �w�Z°m² $�÷ orderings are as-
sembly orderings for the target vertex set D�á . Thus, #AGAP can be trivially reduced to
SAGAP, and the reduction is obviously a logarithmic space parsimonious reduction.
We immediately have

Theorem 4. SAGAP is ()& -complete.

5 Self-Destructible Graph Assembly Model

The assumption in the above accretive model is that once a vertex is assembled, it cannot
be “knocked off” by the later assembly of another vertex. Next, we relax this assumption
and obtain a more general model: the self-destructible graph assembly model. In this
model, the incorporation of a vertex a that repulses an already assembled vertex d can
make d unstable and hence “knock” d off the assembly. This phenomenon renders the
assembly system an interesting dynamic property, namely (partial) self-destruction.

The self-destructible graph assembly system operates on a slot graph. A slot graph ã@
=C�Añ E�G $ is a set of “slots” ñ connected by edges G âCñu�ßñ . Each “slot” Æ'Rgñ is
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Fig. 4. An example self-destructible graph assembly system

associated with a set of vertices Dk�AÆ $ . During the assembly process, a slot Æ is either
empty or is occupied by a vertex H RßDk�AÆ $ . A slot Æ occupied by a vertex H is denoted
as ?PÆ¾EIH"O .

A self-destructible graph assembly system is defined as <B=W? ã@g=B�Añ�E!G $ E�DQE��øEIM]E
?AÆ J EIH J O�E N�O , where ã@ = �Pñ E!G $ is a given slot graph with slot set ñ and edge set
Gæâgñj�Yñ ; DW=�ï J ���
D8�PÆ $ is the set of vertices; the association rule � âmñj�YD is
a binary relation between ñ and D , which maps each slot Æ to its associated vertex set
Dk�AÆ $ (note that the sets Dp�AÆ $ are not necessarily disjoint); for any edge �PÆ��KE�Æ�� $ R G ,
we define a weight function M SFDp�AÆ�� $ �ðDk�PÆ�� $ V ; (here a weight is determined
cooperatively by an edge �AÆ��KE�Æ�� $ and the two vertices occupying Æ�� and Æ�� ); ?AÆLJLEIHUJ�O
is a distinguished seed slot ÆyJ occupied by vertex H¾J ; NðRo: is the temperature of the
system. The size of a self-destructible assembly system is the bit representation of the
system.

A configuration of ã@ is a function ÉzS¾ñðV Djï8èL`}ö���Á�� ê , where empty indicates a
slot being un-occupied. For ease of exposition, a configuration is alternatively referred
to as a graph, denoted as @ . When the context is clear, we simply refer to a slot occupied
by a vertex as a vertex, for readability.

Given the above self-destructible graph assembly system, we aim at assembling
a target graph, i.e. reaching a target configuration, @ á , starting with the seed vertex
?AÆ J EIH J O and using the following unit assembly operations. In each unit operation, we
temporarily attach a vertex H to the current graph @ and obtain a graph @�� , and then
repeat the following procedure until no vertex can be removed from the assembly: in-
spect all the vertices in current graph @ � ; find the vertex H!� with the smallest support,
i.e. the sum of the weights of edges between H"� and its assembled neighbors, and break



the ties arbitrarily (note that H#� can be H ); if the support to H#� is less than N , remove H!� .
This procedure ensures that when a vertex that repulses its assembled neighbors is in-
corporated in the existing assembly, all the vertices whose support drops below system
temperature will be removed. However, in the case when a vertex to be attached exerts
no repulsive force to its already assembled neighbors, the above standard unit assembly
operation can be simplified as follows: a vertex can be assembled if the total support it
receives from its assembled neighbors is equal to or greater than the system temperature
N – this is exactly the same as the operation in the accretive graph assembly model.

Figure 4 gives a concrete example of a self-destructible graph assembly system <�=
?�ã@W=��Añ E�G $ ELDQE��øE�M]EK?AÆLJLEIHUJ�O�E�N�O . Here, slot Æ�� is designated as the distinguished seed
slot ÆLJ and temperature N is set to ½ . Figure 4 (a) depicts the slot graph ã@ = �Pñ E!G $ ,
where ñð=TèLÆ��¾E�Æ���E�Æ�$�E}Æ � E�Æ�%}E�Æ�&�E�Æ('¾E�Æ�)�E�Æ © ê , GW=eè\�AÆ��KE�Æ�� $ E¾�AÆ���E�Æ�$ $ EU�AÆ��KE�Æ � $ EU�AÆ���E�Æ�% $ E
�AÆ $ E�Æ & $ E��AÆ � E�Æ % $ E��PÆ % E�Æ & $ E��AÆ � E�Æ ' $ E4�AÆ % E�Æ ) $ E4�PÆ & E�Æ © $ E4�AÆ ' E�Æ ) $ E4�AÆ ) E�Æ © $�ê . Figure 4 (b)
gives the vertex set D = èLd�Å[a\f�ÜªEInKÂy`�� ê . Figure 4 (c) shows the association rule � :
Dk�AÆ % $ =�èLd�ÅAa\f�ÜªEÎn\Ây`�� ê ; Dk�PÆ $ =ôèLd�ÅAa\f�Ü ê , for Æ'Rmñ�ä�Æ % . Figure 4 (d) illustrates M .
A numerical value indicates the weight of an edge incident to two occupied slots. The
left panel of Figure 4 (d) describes the cases when both slots incident to an edge are
occupied by black vertices; the right panel describes the case when slot Æ*% is occupied
by a grey vertex but its neighboring slot is occupied by a black vertex. For example,
the weight for edge �PÆ�%LE�Æ�) $ , when both Æ�% and Æ�) are occupied with black vertices,
is ½ ; when Æ�% is occupied by a grey vertex and Æ�) by a black vertex, the weight is
°
½ . The negative weight is indicated by a dashed edge. Figure 4 (e) depicts the target
graph (configuration) @¼á , where each the slot in ñ is occupied by a black vertex, i.e.
É��AÆ $ =ud�Å[a\f�Ü for any Æ¼R'ñ .

Now we are ready to define the Self-Destructible Graph Assembly Problem ( +-, 5p& ).

Definition 2. Self-Destructible Graph Assembly Problem (DGAP): Given a self-
destructible graph assembly system < = ?[@ = �Pñ E!G $ E�DFE��øE!M]E�?PÆ J EIH J O�EIN�O and a
target graph (configuration) @ á , determine whether there exists a sequence of assembly
operations such that @ á can be assembled starting from ?PÆ J E!H J O .

6 .0/21g¸ is ¸43 ¸517698 -complete

Theorem 5. DGAP is &�3 &F5k7)9 -complete.

Proof. Recall that the &�34&65k7�9 -complete problem IN-PLACE ACCEPTANCE is
as follows: given a deterministic Turing machine (TM for short) ç and an input string ^ ,
does ç accept ^ without leaving the first ò ^
ò�õe² symbols of the string [26]? We reduce
IN-PLACE ACCEPTANCE to DGAP using a direct simulation of a deterministic
TM ç on ^ with self-destructible graph assembly in &�3 &F5k7)9 .

The proof builds on 1) a classical technique for simulating TM using self-assembly
of square tiles [28, 31], which takes exponential space for deciding &�3 &F5k7)9 -complete
languages; and 2) our new cyclic gadget, which helps the classical TM simulation to
reuse space and thus achieve a &�3 &F5k7)9 simulation. We will first reproduce the classi-
cal simulation; next introduce our modification to the classical simulation; then describe



our cyclic gadget; finally integrate the cyclic gadget with the modified TM simulation
to obtain a &�3 &F5k7)9 simulation and thus conclude the proof.

Classical TM simulation. The classical scheme uses the assembly of vertices on a
2D square grid to mimic a TM’s transition history [28, 31]. Consecutive configurations
of TM are represented by successive horizontal rows of assembled-vertices.

Given a TM ç��;:8E�<cE�=�E�> x $ , where : is a finite set of states, < is a finite set of
symbols, = is the transition function, and > x R?: is the initial state, we construct a self-
destructible assembly system <v=v?A@»=»�Pñ E!G $ E�DFE��øE!M]E�?PÆ J E!H J O�E!N�O as follows. The
slot graph @T=B�Añ�E!G $ is an infinite 2D square grid; each node of the grid corresponds
to a slot ÆqReñ . A vertex HðRgD is represented as a quadruple H�=ô?Aa�E�dLE!f�E!i\O , where
a , d , f , and i are referred to as the North, East, South, and West ‘glues’ (see Figure 5).
Each glue ^ is associated with an integral strength n��w^ $ . More specifically, we construct
the following vertices:

N

S
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s s s
transition verticessymbol vertices state vertices termination vertices

s’s’

qs qsqsqs
q q q’ q’

qsqs rejectaccept@@ @ @ @ @ @ @A@@

Fig. 5. Vertices used in the basic TM simulation

– For each Æ�RB< , construct a symbol vertex ?PÆUE
C
E�Æ¾E�C4O , where C is a special symbolDRB< .
– For each ?;>\E�ÆLO RE:v�F< , construct state vertices ?I?;>\E�ÆLO�E
C
E�Æ¾EHG > O and ?I?I>\E�ÆLO�EKJ >
E�Æ¾E�C4O .

– For each transition ?;>\E�ÆLO�V ?I>��PE�Æ��AE L O (resp. ?;>\E�ÆLO�V ?I>��AE�Æ��[E R O ), where L (resp.
R) is the head moving direction “Left” (resp. “Right”), construct a transition vertex

?AÆ��PE�C E�?;>\E�ÆLO�E J>��wO (resp. ?PÆ��PE G>��¦E}?I>\E�Æ}O�E�C4O ).
– For transition ?I>\E�Æ}O�V ACCEPT (resp. REJECT), construct a termination vertex
? ACCEPT E
C
E}?I>\E�Æ}O�E�C4O (resp. ? REJECT E�C E�?;>\E�ÆLO�E
C�O ).

The glue strength n��I?;>\E�ÆLO $ is set to ½ ; all other glue strengths are 1. Mapping relation
� : every vertex in D can be mapped to every slot in ñ . We next describe weight func-
tion D®�ßD®�YG»V ; . Consider two vertices H � =»?[a�E�dLE�fyE!i\O and H��)=»?[a!�[E�dL�AE!fK�AE!iM� O
connected by edge ` , if ` is horizontal and H � lies to the East (resp. West) of H¾� , the
weight function is n��AdK�AE!i $ (resp. nª�PdLE!iM� $ ); if ` is vertical and H � lies to the North (resp.
South) of H � , the weight function is n��[fyE�a!� $ (resp. n��[a�E�fK� $ ); where nª�[^ E
� $ =mnª�[^ $ (resp.
¬ ) if ^ =2� (resp. ^4N=2� ). In other words, the edge weight for two neighboring vertices
is the strength of the abutting glues, if the abutting glues are the same; otherwise it is 0.

It is straightforward to show that the assembly of the vertices in D on the slot graph @T=
�Añ E�G $ simulates the operation of the TM ç . Figure 6 (a) gives a concrete example to
illustrate the simulation process as in [31]. Here we assume the bottom row in the as-
sembly in Figure 6 (a) is pre-assembled.

Our modified TM simulation. We add two modifications to the classical simula-
tion and obtain the scheme in Figure 6 (b): 1) a set of vertices are added to assemble



an input row (bottom row in the figure) and 2) a dummy column is added to the left-
most of the assembly. For the construction, see the self-explanatory Figure 6 (b). The
leftmost bottom vertex is the seed vertex and a thick line indicates a weight 2 edge.
The reason for adding the dummy column is as follows. The glue strength n��I?I>\E�ÆLO $ is
½ in Figure 6 (a); this is necessary to initiate the assembly of a new row and hence a
transition to next configuration. However, due to a subtle technical point explained later
(in the part “Integrating cyclic gadget with TM simulation”), we cannot allow weight 2
edge(s) in a column unless all the edges in this column have weight 2. So we add the
leftmost dummy column of vertices connected by weight 2 edges, and this enables us to
set n��I?;>\E�ÆLO $ =>² and thus avoid weight 2 edge other than those in the dummy column.
The modified scheme simulates a TM on input ^ with the head initially residing at Æ�x
and never moving to the left of Æ}x . The assembly proceeds from bottom to top; within
each row, it starts from the leftmost dummy vertex and proceeds to the right (note the
difference in the assembly sequence in Figure 6 (a) and (b), as indicated by the thick
grey arrows).

Our cyclic gadget. The above strategy to simulate TM by laying out its configura-
tions one above another can result in a graph with height exponential in the size of the
input ( ò ^ ò ): the height of the graph is precisely the number of transitions plus one. A
crucial observation is that once row r is assembled, row r�°g² is no longer needed: row
r holds sufficient information for assembling row r�õT² and hence for the simulation
to proceed. Thus, we can evacuate row r�°m² and reuse the space to assemble a future
row, say row r õm½ . Using this trick, we can shrink the number of rows from an expo-
nential number to a constant. The self-destructible graph assembly model can provide
us with precisely this power. To realize this power of evacuating and reusing space, we
construct a cyclic gadget, shown in Figure 7 (a). The gadget contains three kinds of
vertices: the computational vertices ( a , d , and f ) that carry out the actual simulation
of the Turing machine; the knocking vertices ( ^ , � , and O ) that serve to knock off the
computational vertices and thus release the space; the anchor vertices ( ^P� , �#� , and OM� )
that anchor the knocking vertices. Edge weights are labeled in the figure.

For ease of exposition, we introduce a little more notation. The event in which a
new vertex d is attached to a pre-assembled vertex a is denoted as ac�¾d ; the event in
which a knocks off d is denoted as a5Qcd .

We next describe the operation of the cyclic gadget. We require that anchor ver-
tices ^R� , �!� , and OM� and computational vertex a are pre-assembled. The anchor ver-
tices and computational vertices will keep getting assembled and then knocked off in a
counterclockwise fashion. First, d is attached to a (event a��Ld ). Then ^ is attached to d
(event d
��^ ). At this point, ^ has total support ² from d , ^P� , and a (providing support
½ , ½ , and °óù , respectively); a has total support °¼² from d and ^ (providing support 2
and -3, respectively). Since the temperature is ½ , ^ will knock off a ( ^SQßa ). Next, we
have d���f followed by fQ��� . At this point, � has total support ² from f and �R� ; d has total
support ² from ^ and f . Therefore, either �TQqd or dUQV� can happen, but �WQqd is in the
desired counterclockwise direction. Next, we will have cycles of (reversible) events. In
summary, the following sequence of events occur, providing the desired cyclicity:
a��yd , d ��^ , ^XQqa ; d �}f , f���� , �VQ'd ; �[fó��a , aWQ'^ , a���O , O5QYf ; a��yd , dYQ?� , d���^ , ^XQ'a ;
dF�}f , fUQVO , f �(� , �ZQ d $�[ ;
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Fig. 6. (a) An example classical simulation of a Turing machine d��fehg
ijg�kHg�lHm � , where eon�Kp gÎÕqg
ró� ; i2n �Hs gLt�� ; transition function k is shown in the figure; l m n p . The top of the left
panel shows two symbol vertices; below are some example transition rules and the corresponding
state vertices and transition vertices. The right panel illustrates the simulation of d on input

s�s t
(simulated as the bottom row, which is assumed to be preassembled), according to the transition
rules in the figure; the head’s initial position is on the leftmost vertex. Each transition of d adds
a new row. (b) Our modified scheme. The leftmost bottom vertex is the seed vertex. The leftmost
column is the dummy column. In both (a) and (b), a thick line indicates a weight 2 edge; a thin
line indicates weight 1; thick grey arrows indicate the assembly sequence

The steps in the � $ will keep repeating. Note that the steps in the � $ are reversible,
which will facilitate our reversible simulation of a Turing machine below.

Integrating cyclic gadget with TM simulation. We next integrate the cyclic gadget
with the modified ÀY� simulation in Figure 6 (b). In the resulting scheme, we obtain
a reversible simulation of a deterministic TM on a slot graph of constant height, by
evacuating old rows and reusing the space: row r is evacuated after the assembly of row
rªõ�² , providing space for the assembly of row r�õ ù .

Figure 7 (b) illustrates the integrated scheme. Slot rows É , å , and u correspond to
rows rh=®ù�Â , rh=®ù�Â¼õø² , and r�=®ùUÂhõ�½ in Figure 6 (b), respectively. Let ò ^
ò =®� .
É is a sequence of slots Éà=wv a\xUE�a � E�é�é�é�E!a  í ��x ; similarly, å =wv d�x¾E�d � E�é�é�é�E�d  í ��xand uX=yv f�x¾E!f � E�é�é�é�E�f  í ��x as in Figure 7 (b). Slots a\x , d�x , and f�x are dummy slots
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Fig. 7. (a) The construction and operation of our cyclic gadget. The counterclockwise grey cycle
indicates the desired sequence of events. (b) The integrated scheme. Grey edges have weight 2.
Unlabeled black edges have weight 1. { | indicates the seed vertex; { m is the seed slot. { z| indicates
a distinguished computational “seed”

(corresponding to the dummy column in Figure 6 (b)). For each a § , d § , and f § , we
construct a cyclic gadget by introducing slots ^ § , � § , O § , ^��§ , �#�§ , and OM�§ .

Slot OM�x is designated as the seed slot ÆyJ and one of its associated vertices as the seed
vertex H¾J and the temperature is again set to ½ .

The edge weights are shown in the figure. We emphasize that the weight for an edge
between two computational vertices (vertices in É , å , and u ) Ä and H is set to the glue
strength if Ä and H have the same glue on their abutting sides; otherwise it is 0. This is
consistent with the scheme in Figure 6 (b) and helps to ensure the proper operation of
the computational assembly. In contrast, the weight for any other edge is always set to
the value shown in Figure 7 (b), regardless of the actual computational vertices present
in the slots in É , å , and u ; this ensures the proper operation of the cyclic gadget.

There are some subtle technical points regarding edge weight assignment. First,
the weight for the edge connecting vertices HKJ�=�O}x and H!�J is 2; while the weight for
an edge connecting O!�x and subsequent vertices other than H"�J that occupy slot a\x is 0.



This ensures the correct operation of the cyclic gadget for the dummy slots. Second,
the assembly of the first row (input row) involves computational vertices with glue
strength 2 (rather than 1) and hence weight 2 edges between neighboring vertices in
this row. However no modification on the edge weight of the edges incident to the
knocking vertices and anchor vertices is required to accommodate this edge weight
difference: the initial step ( ak�Kd , d
��^ , ^�Qea ) is irreversible and it is straightforward
to check that ^�QWa can occur successfully. Third, except for the edges connecting
dummy vertices, no weight 2 edge exists between the computational vertices after the
evacuation of the input row. This is essential for upper bounding the number of vertices
associated with each slot: otherwise, an exponential number of knocking vertices and
anchor vertices would be required.

The assembly proceeds as follows. First, the frame of anchoring vertices (subgraph
with grey edges) will be assembled, starting from the seed vertex at O#�x . The seed vertex
at OM�x will pull in a distinguished computational vertex H"�J (corresponding to the seed ver-
tex in Figure 6 (b)) at slot a x , and H!�J subsequently initiates the assembly of the input row
(corresponding to the bottom row in Figure 6 (b)). Then the computational vertices will
assemble, simulating the process shown in Figure 6 (b). Meanwhile, the cyclic gadget
functions along each layer of a § , d § , and f § (corresponding to column � in Figure 6
(b)), effecting the reusing of space. More specifically, vertices corresponding to those
in rows r�=�ù�Â , r�=�ù�Â�õT² , and r�=�ù�Â�õu½ in Figure 6 (b) will be assembled in É ,
å , and u respectively. Similar to the process in Figure 7 (a), row r�õ�² gets assembled
with the support from row r , and subsequently pulls in knocking vertices, which knock
off row r and thus evacuate space for future row r
õmù to assemble. Within a row, the
vertices are knocked off sequentially from left to right, starting with the dummy vertex.

Concluding the proof. We set the target graph @ á as a complete row of vertices
containing ACCEPT termination vertex ? ACCEPT E�C E�?PÆ¾E�>�O�E
C�O . Then @]á can be assem-
bled if and only if TM ç accepts ^ . We insist @]á to be a complete row of vertices
(occupying Æ�x , Æ � , é�é�é , ÆM� ~ � í � , where ÆYR�èLa�E�dLE�f ê ) to avoid false positives. Note the
size of the slot graph used in the proof is polynomial in the size of the input ò ^
ò and
hence our simulation is in &�3 &F5k7)9 . ¹
Corollary 3. 6-DEGREE DGAP is &�3 &F5k7)9 -complete.

7 Conclusion

In this paper, we define two new models of self-assembly and obtain the following com-
plexity results: 4-DEGREE AGAP is %'& -complete; 5-DEGREE PAGAP is %'& -
complete; #AGAP and SAGAP are (�& -complete; 6-DEGREE DGAP is &�3 &F5k7)9 -
complete. One immediate open problem is to determine the complexity of these prob-
lems with lower degrees. In addition, it would be nice to find approximation algorithms
for the optimization version of the %'& -hard problems. Note AGAP can be solved in
polynomial time if only positive edges are permitted in graph @ , using a greedy heuris-
tic. In contrast, when negative edges are allowed, for each negative edge `)=»�wH � E!H�� $ ,
we need to decide the relative order for assembling H � and HU� . Thus Ü negative edges
will imply ½ ì choices, and we have to find out whether any of these ½ ì choices can re-



sult in the assembly of the target graph. This is the component that makes the problem
hard.
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