Complexity of Graph Self-Assembly in Accretive Systems and
Self-Destructible Systems

John H. Reiff Sudheer Sahl Peng Yin'

Abstract

Self-assembly is a process in which small objects autonomously associate with each other to form
larger complexes. It is ubiquitous in biological constructions at the cellular and molecular scale and
has also been identified by nanoscientists as a fundamental method for building molecular scale struc-
tures. Recent years see convergent interest and efforts in studying self-assembly from mathematicians,
computer scientists, physicists, chemists, and biologists. However most complexity theoretic studies of
self-assembly utilize mathematical models with two limitations: 1) only attraction, while no repulsion, is
studied; 2) only assembled structures of two dimensional square grids are studied. These restrictions limit
the practical impact of the resulting complexity theoretic results. In this paper, we study the complex-
ity of the assemblies resulting from the cooperative effect of repulsion and attraction in a more general
setting of graphs. This allows for the study of a more general class of self-assembled structures than the
previous tiling model. We define two novel assembly models, namely the accretive graph assembly model
and the self-destructible graph assembly model, and identify one fundamental problem in them: the se-
guential construction of a given graph, referred to as Accretive Graph Assembly Problem (AGAP) and
Self-Destructible Graph Assembly Problem (DGAP), respectively. Our main results are: (i) AGAP is
NP-complete even if the maximum degree of the graph is restricted to 4 or the graph is restricted to be
planar with maximum degree 5; (ii) counting the number of sequential assembly orderings that result in a
target graph (#AGAP) igtP-complete; and (iilDGAP isPSPACE-complete even if the maximum
degree of the graph is restricted to 6 (this is the i*StPA CE-complete result in self-assembly). We
also extend the accretive graph assembly model to a stochastic model, and prove that determining the
probability of a given assembly in this modeH$P-complete.

1 Introduction

Self-assembly is the ubiquitous process in which small objects associate autonomously with each other to
form larger complexes. For example, atoms can self-assemble into molecules; molecules into crystals; cells
into tissuesgetc Recently, self-assembly has also been explored as a powerful and efficient mechanism for
constructing synthetic molecular scale objects with nano-scale features. This approach is particularly fruitful
in DNA based nanoscience, as exemplified by the diverse set of DNA lattices made from self-assembled
branched DNA molecules (DNA tiles) [2, 19, 23, 24, 39, 41, 42]. Another nanoscale example is the self-
assembly of peptide molecules [10]. Self-assembly is also used for larger scale construction, for example,
via the use of capillary forces [9, 29] or magnetic forces [1] to provide attraction and repulsion between
meso-scale tiles and other objects.

Building on classical Wang tiling models [28, 37] dating back to 1960s, Rothemund and Winfree [31]
in 2000 proposed an elegant discrete mathematical model for complexity theoretic studies of self-assembly
known as theTile Assembly Modeln this model, DNA tiles are treated as oriented unit squéaies)(Each
of the four sides of a tile has a glue with a positive integral strength. Assembly occurs by accretion of tiles

*The work is supported by NSF ITR Grants EIA-0086015 and CCR-0326157, NSF QuBIC Grants EIA-0218376 and EIA-
0218359, and DARPA/AFSOR Contract F30602-01-2-0561.
TDepartment of Computer Science, Duke University, Durham, NC, Y8&f, sudheer, py }@cs.duke.edu

iteratively to an existing assembly, starting with a distinguisbeeldtile. A tile can be “glued” to a position

in an existing assembly if the tile can fit in the position such that each pair of abutting sides of the tile and the
assembly have the same glue and the total strength of the glues is greater than or equanipdhature

a system parameter. Research in this field largely focuses on studying the complexity of and algorithms for
(uniguely and terminally) producing assemblies with given properties, such as shape. It has been shown that
the construction ofi x n squares has a program size complexity (the minimum number of distinct types
of tiles required) of@(Flgolgofgl—n) [4, 31]. The upper bound is obtained by simulating a binary counter and
the lower bound by analyzing the Kolmogorov complexity of the tiling system [21]. The model was later
extended by Adlemaet al. to include the time complexity of generating specified assemblies [4]. Later
work studies various topics, including combinatorial optimization, complexity problems, fault tolerance, and
topology changes, in the standard Tile Assembly Model as well as some of its variants [4, 5,7, 8, 11, 12, 13,
15, 16, 17, 14, 20, 27, 30, 38, 33, 14, 35, 34].

Though substantial progress has been made in recent years in the study of self-assembly using the
above tile assembly model, which captures many important aspects of self-assembly in nature and in nano-
fabrications, the complexity of some other important aspects of self-assembly remains unexplored:

¢ Only attraction, while no repulsion, is studied. However, repulsive forces often occur in self-assembly.
For example, there is repulsion between hydrophobic and hydrophilic tiles [9, 29]; between tiles labeled
with magnetic pads of the same polarity [1]; and there is also static electric repulsion in molecular
systemsetc. Indeed, the study of repulsive forces (negative edge weight) in the self-assembly system
was posed as an open gquestion by Adleman and colleagues in [4]. Though there has been previous
work on the kinetics of such systems, e.g. Klavin's “waterbug” model [18], no complexity theoretic
study has been directed towards such systems.

e Generally only assembled structures of two dimensional square grids are studied. In contrast, many
molecular self-assemblies using DNA and other materials involve the assembly of more diverse struc-
tures in both two and three dimensions. For example, Seeman’s group constructed self-assembled non-
regular graphs using DNA junction molecules as vertices and duplex DNA molecules as edges [32].

In this paper, we study the cooperative effect of repulsion and attraction in a graph setting. This approach
allows the study of a more general class of assemblies as described above.

We distinguish two systems, namely thecretive systerand theself-destructible systenn an accretive
system, an assembled component cannot be removed from the assembly. In contrast, in the self-destructible
system, a previously assembled component can be “actively” removed from the assembly by the repulsive
force exerted by another newly assembled component. In other words, the assembly can (hersilz)
itself. We define thaccretive graph assembly modet the former and theelf-destructible graph assembly
modelfor the latter.

We first define an accretive assembly model and study a fundamental problem in this model: the sequential
construction of a given graph, referred to as Accretive Graph Assembly Problem (AGAP). Our main result
for this model is that AGAP iNP-complete even if the maximum degree of vertices in the graph is restricted
to 4; the problem remaindP-complete even for planar graphs (planar AGAPor PAGAP) with maximum
degree 5. We also prove that the problem of counting the number of sequential assembly orderings that lead
to a target graph (#AGAP) ig#P-complete. We further extend the AGAP model to a stochastic model, and
prove that determining the probability of a given assembly in this model (stochastic AGAP or SAGAP) is
#P-complete.

If we relax the assumption that an assembled component always stays in the assembly, repulsive force
between assembled components can cause self-destruction in the assembly. Self-destruction is a common
phenomenon in nature, at least in biological systems. One renowned example is apoptosis, or programmed
cell death [36]. Programmed cell death can be viewed as a self-destructive behavior exercised by a multi-
cellular organism, in which the organism actively kills a subset of its constituent cells to ensure the normal
development and function of the whole system. It has been shown that abnormalities in programmed cell

2

death regulation can cause a diverse range of diseases such as cancer and autoimmunity [36]. It is also
conceivable that self-destruction can be exploited in self-assembly based nano-fabrication: the components

that serve to generate intermediate products but are unnecessary or undesirable in the final product should be
actively removed. We provide an illustrative abstract example in Figure 5 and Figure 6 in Section 5.

To the best of our knowledge, our self-destructible graph assembly model is the first complexity theo-
retic model that captures and studies the fundamental phenomenon of self-destruction in self-assembly sys-
tems. Our model is different from previous work on reversible tiling systems [3, 6, 40]. These previous
studies use elegant thermodynamic or stochastic techniques to investigate the reversible process of tile as-
sembly/disassembly: an assembled tile has a probability of “falling” off the assembly in a kinetic system. In
contrast, our self-destructible system models the behavior of a self-assembly system that “actively” destructs
parts of itself.

To model the self-destructible systems, we define a self-destructible graph assembly model, and consider
the problem of sequentially constructing a given graph, referred to as the Self-Destructible Graph Assembly
Problem (DGAP). We prove that DGAP BSPACE-complete even if the graph is restricted to have
maximum degree 6.

The rest of the paper is organized as follows. We first define the accretive graph assembly model
and the AGAP problem in Section 2. In this model, we first show¥ie-completeness of AGAP and
PAGAP(planar AGAP) in Section 3 and then show #P-completeness of SAGAP (stochastic AGAP)
in Section 4. Next, we define the self-destructible graph assembly model aDGHHE problem in Section 5
and show thd® SPA CE-completeness of DGAP in Section 6. We close with a discussion of our results in
Section 7.

2 Accretive Graph Assembly Model

Let N andZ denote the set of natural numbers and the set of integers, respectivgigpA assembly system
is a quadruplel” = (G = (V, E),vs,w, 7), whereG = (V, E) is a given graph with vertex sét and edge
setF, v, € V is a distinguishedeed vertexw : E — Z is a weight function (corresponding to the glue
function in the standard tile assembly model [31]), and N is thetemperatureof the system (intuitively
temperature provides a tunable parameter to control the stability of the assembled structure). In contrast to
the canonical tile assembly model in [31], which allows only positive edge weight, we allow both positive and
negative edge weights, with positive (resp. negative) edge weight modeling the attraction (resp. repulsion)
between the two vertices connected by this edge. We will see that this simple extension makes the assembly
problem significantly more complex.

Roughly speaking, given a graph assembly sysfem (G, v,, w,), G is sequentially constructiblé
we can attach all its vertices one by one, starting with the seed vertex; a wvettx be assembled if the
supportto it is equal to or greater than the system temperatyurehere support is the sum of the weights of
the edges betweenand its assembled neighbors.

Figure 1 gives an example. Here the graph is shown in Figure 1 (a) and the temperature is setto 2. Figure 1
(b) gives a step-by-step illustration of the assembly sequence. Note thgeti§ assembled befoeethen the
whole graph can get assembled: an example assembly orderingeaRbek c <d < f <g<h <i <e.
In contrast, if vertexe gets assembled befohe the graph cannot be assembléadcan be assembled only if it
gets support fronboth g ands; while : cannot get assembled without the support fiam

Formally, given a graph assembly systdm= (G,v,,w,), G is sequentially constructiblég there
exists an ordering oéll the vertices inV, Oy = (vs = v9g < v; < vy < .-+ < v,_1) Such that
> v NG, j<i Wi vj) > 7,0 < i < n—1, whereNg(v;) denotes the set of vertices adjacentsfo
in G. The orderingD7 is called anassembly orderindor G. oo (v;) = Z,UjeNG(,Ui),j<i'LU('Ui,’Uj) is called
the supportof v; in ordering®. When the context is clear, we simply uSeando (v;) to denote assembly
ordering and support, respectively.

A4
2 1 : 1
1 1
d - f
2 1 2
2 2
a b c
(@)

—
L \ 4 A4
2 -1: 1 2 -1: 1 2 -1: 1
e 1 6 1 £ y 1 . 1 f d 1 . 1 f
2 2 2 1 2 2 1 2
2 2 2 2 2 2
a b c a b c a c
(b)

Figure 1: (a) An example of graph assembly in the accretive model. (b) A step-by-step illustration of the example
assembly sequence.

We define theaccretive graph assembly probleas follows,
Definition 2.1 Accretive Graph Assembly Problem (AGAP) Given a graph assembly systdm= (G, vg, w, 7)
in the accretive model, determine whether there exists an assembly ordeforgs.

The above model iaccretivein the sense that once a vertex is assembled, it cannot be ‘popped off’ by
the subsequent assembly of any other vertex. If we relax this assumption, we will obtain a self-destructible
model, which is described later in Section 5.

3 AGAP and PAGAP are NP-complete

3.1 4-DEGREE AGAP isNP-complete

Lemma 3.1 AGAP isin NP.

Proof: Given an assembly ordering of the vertices, sequentially check whether each vertex can be assembled
(with sufficient support). This takes polynomial time. O

top vertices

literal vertices q O OT3

bottom vertex

(@)

Figure 2: (a) A clause gadget. The top vertices and the bottom vertex are colored black; the literal vertices are white.
(b) A graph construction corresponding to an AGAP reduction from 3SAT forfayl® z2 V x3) A (Z1 V T3 V x2) A

(z1 VT2V xs). An edge between two literal vertices is depicted as a dashed arch and assigned weight -1; all other edges
have weight 2.

Recall that theN'P-complete 3SAT problem asks: Given a Boolean formbilia conjunctive normal form

with each clause containing 3 literals, determine wheghisrsatisfiable [26]. Also recall that 3SAT remains
NP-complete for formulas in which each variable appears at most three times, and each literal at most
twice [26]. We will reduce this restricted 3SAT to AGAP to prove AGAPN#®-hard.

Lemma 3.2 AGAP is NP-hard.

Proof: Given a 3SAT formulap where each variable appears at most three times, and each literal at most
twice, we will construct below an accretive graph assembly system (G, vs, w, 7) for ¢. We will then

show that the satisfiability problem gfcan be reduced (in logarithmic space) to the sequential constructibility
problem ofG in T.

For each clause i, construct aclause gadgess in Figure 2 (a). For each literal, we construct a
literal vertex(colored white in Figure 2 (a)). We further atlop verticeg(black) above antbottom vertices
(black) below the literal vertices as in Figure 2 (a). We next take care of the structure of fafmasifallows.
Connect all the clause gadgets sequentially via their top vertices as in Figure 2 (b); connect two literal vertices
if and only if they correspond to two complement literals. This produces grabesignate the leftmost top
vertex as the seed vertex. We next assign weight 1 to an edge between two literal vertices and weita
all the other edges. Finally, set the temperature 2. This completes the construction pf= (G, v, w, 7).

For a concrete example, see Figure 2 (b).
The following proposition implies the lemma.
Proposition 3.3 There is an assembly orderirf@ for 7 if and only if¢ is satisfiable.
=
First we show that i) can be satisfied by truth assignméntthen we can derive an assembly orderifig
based orf'.

Stage 1.Starting from the seed vertex, assemble all the top vertices sequentially. This can be easily done
since each top vertex will have support 2, which is greater than or equaktd, the temperature.

Stage 2.Assemble all the literal vertices assignedie. Since twotrue literals cannot be complement
literals, no two literal vertices to be assembled at this stage can have a negative edge between them. Hence
all thesetrue literal vertices will receive a support 2(r = 2).

Stage 3. Assemble all the bottom vertices. Note that truth assignriiesatisfiesy implies that every
clause ing has at least onérue literal. Thus every clause gadget @ has at least one literal vertex (a
true literal vertex) assembled in stage 2, which in turn allows us to assemble the bottom vertex in that clause
gadget.

Stage 4.Assemble all the remaining literal vertices (tfie! se literal vertices). Observe that any remain-
ing literal vertexv has support from its already assembled neighboring top vertex and bottom vertex and
thatv can have negative support at mest from its assembled literal vertex neighbors (recall that each literal
vertex can have at most two literal vertex neighbors since each variable appears at most three ¢imes in
Hence the total support farwill be at least (> 7).
=

g

T

(@)

Figure 3: (a) and (b) are respectively an identifying graph and a PAGAP graph construction corresponding to the
P3SAT formulaAABACADAE = (xVyVw)A(zVy)A(wVz)A(GVZ)A(DV Z). The larger (smaller) white

circles represent clauses (literals); black vertices in (b) represent assisting vertices. Note that each clause is adjacent
to at most three literals; each literal is adjacent to at most two clauses. The grey loop in (a) is lotgmers in (b)

indicate edge weights.

Suppose that there exists an assembly ordefinthen we can derive a satisfying truth assignmigrior ¢.
For each literal vertex, assign its corresponding litérale if it appears inO beforeall of its literal ver-
tex neighbors (this assures no two complement literals are both assigngpotherwise assign ifalse.

To show thatT" satisfies¢, we only need to show every clause contains at leasttone literal. For
contradiction, suppose there exists a clause gadgeith three false literal vertices, where is the lit-
eral vertex assembled first. Howeveigcannot be assembled: it has supgofitom the top vertex; no support
from the bottom vertexiy gets assembled first and hence the bottom vertekdannot be assembled before
v); at least-1 negative support from one of its literal vertex neighbergs(@ssigned alse); the total support
of v is thus at most, less than temperature= 2. Contradiction. Henc& must satisfyp. O

The following theorem follows immediately from Lemma 3.1 and Lemma 3.2.
Theorem 3.4 AGAP is NP-complete.
Let k-DEGREE AGAP be the AGAP in which the largest degree of any vertex in giajghk. Observe
that the largest degree of any vertex in the graph construction in the proof of Lemmal 3t2eisce we have
Corollary 3.5 4-DEGREE AGAP is NP-complete.

3.2 5-DEGREE PAGAP isNP-complete

We next study the planar AGAP (PAGAP) problem, where the gr@mthe assembly systeffi is planar.
First, note that the following lemma is trivially true.
Lemma 3.6 PAGAP isin NP.

We show that PAGAP iNP-hard by a reduction from thlP-hard planar three-satisfiability problem
(P3SAT) [22], defined in the following way. Given a 3SAT formylaconstruct itsdentifying graphG =
(V, E) as follows: the vertex sét is {I| [is a variable} | J{c| c is a claus¢}; the edge seE is {(I, ¢)| lisa
variable in clause}. If G is planar,¢ is referred to as planar 3SAT (P3SAT) formula P3SAT problem is
to decide the satisfiability of a P3SAT formuja

We use the identifying graph construction in [25], which represents each vatialith two vertices
(one forz and one forz) connected by an edge. See Figure 3 (a) for an example. We use the following
two properties of this construction in our proof: 1) There exists a lbdpat passes between all pairs of

literals without intersecting any edge between a literal and a clause; 2) Any literal can belong to at most two
clauses [25].

Lemma 3.7 PAGAP is NP-hard.

Proof: Given an arbitrary P3SAT formula, we first construct an assembly systdm= (G, vs, w, 7).
We then show that the satisfiability problem ofcan be reduced (in logarithmic space) to the sequential
constructibility problem of7 in 7.

We construct a grapliy = (V, E) by modifying the identifying graph of: along the loopL, add an
assisting vertex; between every two consecutive pairs of literal vertices and connerith all these four
vertices as shown in Figure 3 (b). Next, we assign edge weights. The weight of an edge between a literal
and a clause ig; the weight of an edge between a litetabnd its complement is —6 if neither of them
is connected to more than one clause; itH$0 if at least one of the literals is connected to two clause
vertices. The weight of an edge connecting an assisting vertex and a literal wéstéxf the weight of edge
(z,z) is —10 andz is connected to only one clause vertex; otherwise & i§inally, we select an arbitrary
assisting vertex, say;, as the seed vertax and set the temperature= 2. This completes the construction
of T.

We next prove the following proposition, which completes the proof of the lemma.

Proposition 3.8 If and only if ¢ is satisfiable, there is an assembly orderifig
=
Suppose there exists a truth assignnigthat satisfies), we give the following assembly ordering.

Stage 1.Assemble all the assisting vertices amde literals as follows. Starting from the seed vertex,
following the clockwise direction along loop, we assemble alternatetyue literals (one ofz and z is
necessarilytrue) and assisting vertices, till we reach the seed vertex again. For example, a satisfying truth
assignmentz, y, z, w) = (true,true,true,false) in Figure 3 (b) will give the assembly ordering = v; <
Yy <1y <2<v3<w<v4<7.

Stage 2.Assemble all the clauses. Sin€esatisfiesp, each clause contains at least anee literal and
hence is now connected to at least enee literal vertex assembled in stage 1. Thus all the clause vertices
can be assembled now.

Stage 3.Assemble all thefalse literals and thus complete the whole graph. Since all the neighbors of
eachfalse literal have already been assembled, it is easy to verify that there is enough support for it.
<~
Suppose that there exists an assembly ordeflngve derive fromQ a truth assignmerif’ by assigning a
literal vertexz true if it appears befor& in O; assign itf alse otherwise. We claim thaf’ satisfiesp.

For contradiction, assume there is a clause, 4aynsatisfied, with all its literals, y, andz assigned
false. This implies thatz (resp.y, z) appears before (resp.y, z) in O. Assume w.l.o.g. that < y < zin
O. SinceA is adjacent tonly x, y, andz, vertexz must appear beford in 0. However, by the edge weight
assignment, ifc appears after its complement then it can be assembled only aftl the clause vertices
connected ta: are assembled. In particular, we must have clalisgppears before. Contradiction. We thus
conclude thafl” must satisfyp. O

Putting together Lemma 3.6 and Lemma 3.7, we have
Theorem 3.9 PAGAP is NP-complete.

Corollary 3.10 5-DEGREE PAGAPis NP-complete.

e4 es

vl V9 V3

(@)

Figure 4: (a) and (b) show an example bipartite gr&xdmnd the corresponding graphused in the proof of Lemma 4.2,
respectively. In (b)g;’s denote connector vertices (colored whita); is the seed vertex. The weight of an edge
connecting two connector vertices (dashed line}4s the weight of any other edge 2s

4 #AGAP and SAGAP are#P-complete

4.1 #AGAP is#P-complete

We now consider a more general version of AGAP: given an accretive graph assembly Bysté, v,, w, T)

and atarget vertex set; C V, determine if there exists an orderid(V, V;) of V such thafl; is assembled

after weattemptassembling each vertex € V sequentially according t@. Vertexv will be assembled

if there is enough support; otherwise it will not bé. is called the assembly ordering ©f for ;. When

the context is clear, we simply call it assembly ordering¥pand denote it by). Note that the assembly
ordering® is an ordering on all the vertices Ifi, but we only care about the assembly of the target vertex set

V;: the assembly of vertices Wi \ V; is neither required nor prohibited. Fbf = V, the general AGAP is

then precisely the standard AGAP we have been studying. The problem of counting the number of assembly
orderings forV; C V under this general AGAP model is referred to as #AGAP.

Lemma 4.1 #AGAP isin #P.

We next show #AGAP ig£P-hard, using a reduction from t¢P-complete problem PERMANENT,
the problem of counting the number of perfect matchings in a bipartite graph [26].

Lemma 4.2 #AGAP is #P-hard.

Proof: Given a bipartite grapl? = (U, V, E) with two partitions of vertice§/ andV and edge sel/, where
U= {ul,...,upn}, V={v1,...,v,}, andE = {ey,...,en} (recall that by definition of bipartite graph,
there is no edge between any two verticeg/iand no edge between any two verticed/ij) we construct an
assembly systemi = (G, vs, w, 7). First, we derive graply by adding vertices and edgesiBo(see Figure 4
for an example): on each edggadd a splittingconnector vertex;,; add an edge (dashed line) between two
connector vertices if they share a same neighbdvjrconnectu; andwu,;,q fori = 1,...,n — 1. Next,
assign weight-4 to an edge between two connector vertices; assign weighall the other edges. Finally,
designate.; as the seed vertax, and set the temperature= 2. The target vertex séf, isU | J V.

A crucial property ofG is that the assembly of one connector veraxll make all of ¢’s connector ver-
tex neighbors unassemblable, due to the negative edge conneatidgts neighbors. Consequently, starting
from a vertexu € U, only one connector vertex and hence only ore V' can be assembled. For a concrete
example, see Figure 4 (b): starting fram, if we sequentially assembtg andwvy, vertexc; will render co
unassemblable, and hence the assembly sequgnee:s < v9 is not permissible.

We first show that if there is no perfect matchingBnthere is no assembly ordering forlJ V. If there
is no perfect matching i3, then there exist§ C V' s.t. |[N(S)| < |S| (Hall's theorem), wher&v (S) C U is
the set of neighboring vertices to the verticesim original graphB. However, as argued above, one vertex
in U can lead to the assembly of at most one verteX imrhus| N (.S)| < |S| implies that at least one vertex
in S remains unassembled. Hence, no assembly ordering exists that can assemble all vértidds.in

Next, when there exists perfect matching(s)Bnwe can show that each perfect matchingHrcorre-
sponds to dixed number of assembly orderings for| J V. First note that the total number of vertices in

8

graph@G is 2n + m (recall thatm is the number of edges iB and hence number of connector vertices in
G), giving a totals = (2n + m)! permutations. We divide by the following factors to get the number of
assembly orderings fdv | J V.

1. For every matching edgg between. € U andv € V', we have to follow the strict order < ¢, < v,
wherecy, is the connector vertex an,. This is ensured by our construction as argued above. There are
altogethem such matching edges. So we need to further diyitg (3!)".

2. For then vertices inU, we have to follow the strict order of assembling the vertices from left to right,
and hence we need to dividedy n!.

3. Denote byi; the degree ofi; in graphB. For thed; connector vertices corresponding to theedges
incident onu;, the connector vertex corresponding to the matching edge must be assembled first, and
thus, we need to further divideby II7_, d;.

(2n+m)!
307 (nh)(M7, d;)

Putting together 1), 2), and 3), we have that each perfect matchitig) dorresponds t
assembly orderings fdr | J V' in G. This completes the proof.

Lemma 4.1 and Lemma 4.2 imply
Theorem 4.3 #AGAP is #P-complete.

4.2 SAGAP is#P-complete

An intimately related question to counting the total number of assembly orderings is the problem to calculate
the probability of assembling a target structure in a stochastic setting. We extend the accretive graph self-
assembly model to stochastic accretive graph self-assembly model as follows. Given &graph, F),
where|V| = n, starting with the seed vertex, what is the probability that the target vertex 8giC V gets
assembled if anytime any unassembled vertex can be picked with equal probability? This problem is referred
to as stochastic AGAP (SAGAP).

Since any unassembled vertex has equal probability of being selected and the assembly has to start with
the seed vertex, the total number of possible orderinggrare 1)!. Then SAGAP asks precisely how
many of thesgn — 1)! orderings are assembly orderings for the target verte¥X;sethus, #AGAP can be
trivially reduced to SAGAP, and the reduction is obviously a logarithmic space parsimonious reduction. We
immediately have
Theorem 4.4 SAGAPis #P-complete.

5 Self-Destructible Graph Assembly Model

The assumption in the above accretive model is that once a vertex is assembled, it cannot be “popped off”
by the subsequent assembly of another vertex. Next, we relax this assumption and obtain a more general
model: theself-destructible graph assembly madel this model, the incorporation of a vertexhat exerts
repulsive force on an already assembled vertean make unstable and hence “pop’off the assembly. This
phenomenon renders the assembly system an interesting dynamic property, namely (partial) self-destruction.
The self-destructible graph assembly systeperates on alot graph A slot graphG = (S,E) is a set
of “slots” S connected by edgeB C S x S. Each “slot”s € S is associated with a set of vertic®ys).
During the assembly process, a stas either empty or is occupied by a vertexc V' (s). A slot s occupied
by a vertexv is denoted asgs, v).
A self-destructible graph assembly systismdefined a§” = (G = (S, E), V, M, w, (s, vs),), where
G = (S, E) is a given slot graph with slot sét and edge seE C S x S; V = U,es V(s) is the set of
vertices; the association ruld C S x V is a binary relation betweefi andV', which maps each slatto

9

{o, o}

Slot Graph Vertex Set Association

(a) (b) (©)
Sg 1 Sh 3 Si Sg Sh S; Sg 1 Sh 3 Si
A d
2 2: 2 2 2 2
Y 1 0 Sd g Sd 1 0
Se St Se Sf
2 0 1 2 0 1
2 2 2 2
Sa Sb Se Sa Sa S Sec
Edge Weights Target Graph

(d) (e)

Figure 5: An example self-destructible graph assembly system.

its associated vertex skt(s) (note that the setl(s) arenot necessarily disjoint); for any edde,, s;) € E,

we define a weight function : V' (s,) x V(s,) — Z (here a weight is determined cooperatively by an edge
(sa, sp) @and the two vertices occupying ands;); (ss, vs) is a distinguishedeed slot,; occupied by vertex

vs; T € N is thetemperatureof the system. The size of a self-destructible graph assembly system is the bit
representation of the system.

A configurationof G is a function4 : S — V [J{empty}, whereemptyindicates a slot being un-
occupied. For ease of exposition, a configuration is alternatively referred tgrapla denoted a&/. When
the context is clear, we simply refer to a slot occupied by a vertexvastex for readability.

Given the above self-destructible graph assembly system, we aim at assembling a target graph, i.e. reach-
ing a target configurationi?;, starting with the seed vertgx, v;) and using the followinginit assembly
operations In each unit operation, we temporarily attach a veriéx the current graptiy and obtain a graph
G', and then repeat the following procedure until no vertex can be removed from the assembly: inspect all the
vertices in current grapfi’; find the vertexy’ with the smallessupport i.e. the sum of the weights of edges
betweeny’ and its assembled neighbors, and break the ties arbitrarily (note’ tbeat bev); if the support to
v is less thanr, removev’. This procedure ensures that when a vertex that repulses its assembled neighbors
is incorporated in the existing assembly, all the vertices whose support drops below system temperature will
be removed. However, in the case when a vertex to be attached exerts no repulsive force to its already as-
sembled neighbors, the above standard unit assembly operation can be simplified as follows: a vertex can be
assembled if the total support it receives from its assembled neighbors is equal to or greater than the system
temperature- — this is exactly the same as the operation in the accretive graph assembly model.

Figure 5 and Figure 6 give a concrete example of a self-destructible graph assembly Fyataina
sequence of unit assembly operations that assemble a target(graphi. Figure 5 illustrates the assembly
systemT = (G =(S, E), V, M, w, (s,,v,), 7). Here, slots, is designated as the distinguished seedslot
and temperature is set to2. Figure 5 (a) depicts the slot gragh= (S, E), whereS = {sq, s, Sc, S Se,

SfrSg> Shy sit B ={(as), (Sb,5¢) (8a,54), (Sb, 5¢), (S, Sf)v (Sds Se)s (Se, Sf)v (sd; 89)7 (Se,5h), (5f7 si),
(8¢, 5n), (sn,s;)}. Figure 5 (b) gives the vertex skt = {black, grey}. Figure 5 (c) shows the association

10

Sa Sp Se

Figure 6: The sequence of operations that assemble the target@raph

rule M: V(se) = {black, grey}; V(s) = {black}, fors € S\ s.. Figure 5 (d) illustratesv. A numerical
value indicates the weight of an edge incident to two occupied slots. The left panel of Figure 5 (d) describes
the cases when both slots incident to an edge are occupied by black vertices; the right panel describes the
case when slot, is occupied by a grey vertex but its neighboring slot is occupied by a black vertex. For
example, the weight for edge., s;,), when boths, and s;, are occupied with black vertices, is2. This
negative weight is further indicated by the dashed edge. Figure 5 (e) depicts the target graph (configuration)
G, where each the slot ifi is occupied by a black vertex, i.él(s) = black for anys € S.

An example sequence of unit assembly operations that sequentially assembles the targét; gsaph
illustrated step by step in Figure 6. We start w(th, black), wheres, = s,. In step (1), a black vertex is put
into slots, and stays there, since the support it receives from the black vertex occupying &, which
is greater than or equal to the system temperatute 2. In step (5), a grey vertex occupies sktand is
attached to existing assembly. It stays in slpsince it receives a total support of 2 from its neighboring
assembled vertices (support 1 from the black vertex occupyinggkand support 1 from the black vertex
occupying slots;). Step (8) has two stages (8a) and (8b). In step (8a), a black vertex is temporarily put into
slot s,. Now the grey vertex occupying slet has the least support among all the vertices in this temporary
assembly. Since its support 1 is less than temperatuse 2, the grey vertex ins. is removed from the
assembly in step (8b), according to the unit assembly operation rule. Now no vertex can be removed since
all vertices have support greater than or equal te 2. In step (9), a black vertex is put into slat and this
completes the assembly of the target graph.

Here we emphasize that in the above example, the grey vertex at sletves as a “stepping stone” for
assembling the target graph: its incorporation into the assembly enables the subsequent assembly of a black

11

vertex at slots s, which in turn effects the assembly of a black vertex;atHowever, at this stage, the grey
vertex at slots, becomes a barrier for the progress of the assembly towards the target configuration — it must
be popped off the assembly to evacuate sldor the assembly of a black vertex @t This is achieved by
the incorporation of a black vertex at slgf. This is precisely the power of (partial) self-destruction: the
system actively gets rid of the undesirable components to ensure the progress of further assembly. Finally,
we point out that the grey vertex associated witls indispensable for the assembly of the target graph. The
reader can verify that without this grey vertex, the target graph cannot be sequentially constructed.

In the above example, the assembly of black vertex atsglétleterministically” and “irreversibly” pops
off the grey vertex at slot.. However, the self-destructible graph assembly model can also exhibit interesting
non-deterministic, reversible behavior under the following circumstance: the assembly of comppopat
off componenb, while the immediate re-assembly of componieaén in turn knock off the newly assembled
component. For a concrete example, now assume that in Figure 6, the weight for(egge) (when slots
sy, ands; are occupied by black vertices) is 2 instead of 3. Then at step (8b) either the black vertexzat slot
or the grey vertex at slot, can be removed, since both vertices have suppett2 = r and we break ties
arbitrarily. For the same reason, in the case when the grey vertgexsatemoved, an immediate reassembly
of a grey vertex at slot. can result in the disassembly of the black vertex;atin this sense, the system at
this stage becomes “non-deterministic” and “reversible”. This property is used in the construction of a cyclic
gadget, which provides the basis for @8PA CE-complete proof in Section 6.

Now we are ready to define the Self-Destructible Graph Assembly Prod&AR).

Definition 5.1 Self-Destructible Graph Assembly Problem (DGAP)Given a self-destructible graph as-
sembly systerfi’ = (G = (S, E),V,M,w,(ss,vs), 7y and a target graph (configurationls,;, determine
whether there exists a sequence of assembly operations sudh;tbah be assembled starting frofs, vs).

6 DGAP is PSPACE-complete

Theorem 6.1 DGAP is PSPACE-complete.

Proof: Recall that thePSPACE-complete problem IN-PLACE ACCEPTANCE is as follows: given a
deterministic Turing machine (TM for short] and an input string:;, doesU acceptz without leaving the
first || + 1 symbols of the string [26]? We reduce IN-PLACE ACCERNCE to DGAP using a direct
simulation of a deterministic TMV on z with self-destructible graph assemblyRSPACE.

The proof builds on 1) a classical technique for simulating TM using self-assembly of square tiles [28, 31],
which takes exponential space for decidR§ PA CE-complete languages; and 2) our new cyclic gadget,
which helps the classical TM simulation to reuse space and thus achR8®A CE simulation. We will
first reproduce the classical simulation; next introduce our modification to the classical simulation; then
describe our cyclic gadget; finally integrate the cyclic gadget with the modified TM simulation to obtain a
PSPACE simulation and thus conclude the proof.

Classical TM simulation. The classical scheme uses the assembly of vertices on a 2D square grid to
mimic a TM’s transition history [28, 31]. Consecutive configurations of TM are represented by successive
horizontal rows of assembled-vertices.

GivenaTMU (Q, %, 6, q0), whereQ is a finite set of stateg; is a finite set of symbolg), is the transition
function, andgy € @ is the initial state, we construct a self-destructible assembly sy§tem (G =
(S, E),V,M,w, (ss,vs),) as follows. The slot graptG = (S, E) is an infinite 2D square grid; each node
of the grid corresponds to a sloe S. A vertexv € V is represented as a quadruple: (a, b, ¢, d), whereq,

b, c, andd are referred to as the North, East, South, and Vgasts’ (see Figure 7). Each glueis associated
with an integral strength(x). More specifically, we construct the following vertices:

e Foreachs € X, construct aymbol vertexs, v, s, v}, wherey is a special symbaf .

e Foreachq, s) € Q x X, constructstate vertices(gq, s), 7, s, 3) and((q, s), Z, 8,7)-

12

)) OO LY O

symbol vertices state vertices transition vertices termination vertices

Figure 7: Vertices used in the basic TM simulation.

e Foreach transitiol, s) — (¢, s', L) (resp.(q, s) — (¢, ', R)), where L (resp. R) is the head moving
— —
direction “Left” (resp. “Right”), construct &ansition vertex(s’,~, (¢, s), ¢') (resp.(s’, ¢, (g, s),7))-

e For transition(q, s) — ACCEPT (resp.REJECT), construct aermination verteXACCEPT, ~, (g, s),y)
(resp.(REJECT, 7, (¢, 5),7))-

The glue strengtly({(q, s)) is set to2; all other glue strengths are 1. Mapping relatith every vertex in

V' can be mapped to every slot 1 We next describe weight functioh x V' x E — Z. Consider two
verticesv; = (a, b, ¢,d) andvy = {(a/, ¥, ¢, d’) connected by edge if e is horizontal and), lies to the East
(resp. West) ofiy, the weight function ig (', d) (resp.g(b, d')); if e is vertical andy; lies to the North (resp.
South) ofvq, the weight function ig(c, a’) (resp. g(a,c')); whereg(z,y) = g(z) (resp.0) if z = y (resp.

x # y). In other words, the edge weight for two neighboring vertices is the strength of the abutting glues, if
the abutting glues are the same; otherwise it is O.

It is straightforward to show the assembly of the vertice¥ ion the slot grapléz = (.S,) simulates the
operation of the TMU. Figure 8 (a) gives a concrete example to illustrate the simulation process as in [31].
Here we assume the bottom row in the assembly in Figure 8 (a) is pre-assembled.

Our madified TM simulation. We add two modifications to the classical simulation and obtain the
scheme in Figure 8 (b): 1) a set of vertices are added to assemble an input row (bottom row in the figure) and
2) a dummy column is added to the leftmost of the assembly. For the construction, see the self-explanatory
Figure 8 (b). The leftmost bottom vertex is the seed vertex and a thick line indicates a weight 2 edge. The
reason for adding the dummy column is as follows. The glue strefidth s)) is 2 in Figure 8 (a); this is
necessary to initiate the assembly of a new row and hence a transition to next configuration. However, due
to a subtle technical point discussed in Appendix A, we cannot allow weight 2 edge(s) in a column unless
all the edges in this column have weight 2. So we add the leftmost dummy column of vertices connected by
weight 2 edges, and this enables us toggét, s)) = 1 and thus avoid weight 2 edge other than those in the
dummy column.

The modified scheme simulates a TM on inpuwith the head initially residing aty and never moving
to the left of syp. The assembly proceeds from bottom to top; within each row, it starts from the leftmost
dummy vertex and proceeds to the right (note the difference in the assembly sequence in Figure 8 (a) and (b),
as indicated by the thick grey arrows). Unfortunately, this assembly sequence can introduce error: e.g. in

place of a state vertex = ({(q, s;), 3, si,7y), a symbol vertexy = (s;,, s;,y) can get assembled sinee
andwvy share the same South glue and the same West glue. Fortunately, this mistake can be corrected by our
final assembly system that performsedf-destructiblesimulation of a Turing machine, as described later.

Our cyclic gadget. The above strategy to simulate TM by laying out its configurations one above another
can result in a graph with height exponential in the size of the inpy): (the height of graph is precisely
the number of transitions plus one. A crucial observation is that once iswssembled, row — 1 is no
longer needed: row holds sufficient information for assembling rawt+ 1 and hence for the simulation
to proceed. Thus, we can evacuate row 1 and reuse the space to assemble a future row, say Fpew
2. Using this trick, we can shrink the number of rows from an exponential number to a constant. The
self-destructible graph assembly model can provide us with precisely this power. To realize this power of
evacuating and reusing space, we construgydic gadget shown Figure 9 (a). The gadget contains three
kinds of vertices: theomputational verticega, b, andc) that carry out the actual simulation of the Turing
machine; theknocking verticegz, y, andz) that serve to knock off the computational vertices and thus

13

0@1

symbol vertices

A71*>C717R

/B0 BO -

B v A v B,0— A,1,L
0 BO

A 7 7 B) A,0— B,1,R
0 AQ

state vertices transition vertices

i=3

i=2

i=1

i=0

(@)

Figure 8: (a) An example classical simulation of a Turing machif@, ¥, 4, ¢o), where@ = {4, B,C}; ¥ = {0, 1};

transition functiony is shown in the figurego = A. The top of the left panel shows two symbol vertices; below are
some example transition rules and the corresponding state vertices and transition vertices. The right panel illustrates
the simulation o/ on input001 (simulated as the bottom row, which is assumed to be preassembled), according to the
transition rules in the figure; the head’s initial position is on the leftmost vertex. Each transitidadds a new row.

(b) Our modified scheme. The leftmost bottom vertex is the seed vertex. The leftmost column is the dummy column.
In both (a) and (b), a thick line indicates a weight 2 edge; a thin line indicates weight 1; thick grey arrows indicate the
assembly sequence.

release the space; tlchor verticeqz’, ¥/, andz’) that anchor the knocking vertices. Edge weights are
labeled in the figure.

For ease of exposition, we introduce a little more notation. The event in which a new késtattached
to a pre-assembled vertexs denoted as - b; the event in which: pops offb is denoted as — b.

We next describe the operation of the cyclic gadget. We require that anchor veftigésandz’ and
computational vertex are pre-assembled. The anchor vertices and computational vertices will keep getting
assembled and then popped off in a counterclockwise fashion. bissgttached ta (eventa - b). Thenz
is attached td (eventb - z). At this point, z has total support from b, z’, anda (providing suppore, 2,
and—3, respectively)u has total support-1 from b andz (providing support 2 and -3, respectively). Since
temperature i€, x will knock off a (z 4 a). Next, we have - ¢ followed byc - y. At this point,y has total
supportl from ¢ andy’; b has total support from z andc. Therefore, eithey 4 b or b 4 y can happen,
buty - b is in the desired counterclockwise direction. Next, we will have cycles of (reversible) events. In
summary, the following sequence of events occur, providing the desired cyclicity:
a-bb-z,xa;b-c,cry,yb; (cra,adx,a-2,24¢;a-b,b4y,b-z,z4a;b-¢c,cdz,c¢-y,yb)*;

The steps in th€) will keep repeating. Note that the steps in {here reversible, which facilitates our
reversible simulation of a Turing machine below.

Integrating cyclic gadget with TM simulation. We next integrate the cyclic gadget with the modified
T'M simulation in Figure 8 (b). In the resulting scheme, we obtain a reversible simulation of a deterministic
TM on a slot graph of constant height, by evacuating old rows and reusing the spadds exacuated after
the assembly of row + 1, providing space for the assembly of réw- 3.

Figure 9 (b) illustrates the integrated scheme. Slot relysB, and C correspond to rows = 3r,

i = 3r+1,and: = 3r 4+ 2 in Figure 8 (b), respectively. Let:| = n. A is a sequence of slotd =
[ap,a1,...,an+1]; Similarly, B = [by, b1,...,b,41] @andC = [cp, ¢, ..., cnt1] @S in Figure 9 (b). Slotsy,
by, andcy are dummy slots (corresponding to the dummy column in Figure 8 (b)). Forgakh andc;, we
construct a cyclic gadget by introducing slats y;, z;, =7, y;, andz;.

The edge weights are shown in the figure. We emphasize that the weight for an edge between two
computational vertices (vertices i, B, andC) v andwv is set to the glue strengthif andv have the same
glue on their abutting sides; otherwise it is 0. This is consistent with the scheme in Figure 8 (b) and helps
to ensure the proper operation of the computational assembly. In contrast, the weight for any other edge is

14

’ ’ 2! z z z
z Y “0 1 2
e L] * L]
«2 2.®) o \ \
o-<_ 2 ’d 3 , \ \
z 4 ‘*‘?1\0’ == Y ZOQ\ /Us Zlb 22k 23
N \\ AYERN \ \\ \ \\
2\ 2 2 /_3 \4\13 ~\ 20 1 \\ \(-(\11 1 \\ ~ 22 \\ as A
=4\ \ \ \
,/ N7\N -4 -3 3 N N \
ar b co \ 1 cp \ ca\ \ c3\ N o
o p N L L, S~ BN <
_3\\ ,/2 PR SN P PR N AP >N ; ///’5’:‘3 .
v ////’—4 AN ///’_3 2\\\D /: - N /:// AN
v Fyo zo; Py vy Pys w2 Y3 37
2(\?1' 13 el 2 21 ’ | / |
- ¢ - -y & l
o ’ ! / ! ! l ! !
Yo R Yz Y3 .
L 3 7 3 ® ®
I ! ’ I
z Ty Zo T3
(a) (b)

Figure 9: (a) The construction and operation of our cyclic gadget. The counterclockwise grey cycle indicates the desired
sequence of events. (b) The integrated scheme. Grey edges have weight 2. Unlabeled black edges havevyeight 1.
indicates the seed vertex; is the seed slot’, indicates a distinguished computational “seed”.

always set to the value shown in Figure 9 (b), regardless of the actual computational vertices present in the
slots inA, B, andC;; this ensures the proper operation of the cyclic gadget.

Slot 2, is designated as the seed sigtand one of its associated vertices as the seed vertard the
temperature is again set2o

The assembly proceeds as follows. First, the frame of anchoring vertices (subgraph with grey edges) will
be assembled, starting from the seed vertex, al he seed vertex af, will pull in a distinguished computa-
tional vertexv’, (corresponding to the seed vertex in Figure 8 (b)) atgJoandv!, subsequently initiates the
assembly of the input row (corresponding to the bottom row in Figure 8 (b)). Then the computational ver-
tices will assemble, simulating the process shown in Figure 8 (b). Meanwhile, the cyclic gadget functions
along each layer af;, b;, andc; (corresponding to columjin Figure 8 (b)), effecting the reusing of space.
More specifically, vertices corresponding to those in réws 3r, i = 3r + 1, andi = 3r + 2 in Figure 8
(b) will be assembled i, B, andC respectively. Similar to the process in Figure 9 (a), riow 1 gets
assembled with the support from rawand subsequently pulls in popper vertices, which knock offirawd
thus evacuate space for future row 3 to assemble. Within a row, the vertices are knocked off sequentially
from left to right, starting with the dummy vertex.

Errors that occur during the assembly can be subsequently corrected as described in Appendix A. Some
other subtle technical points are also discussed in Appendix A.

Concluding the proof. We set the target grapfi; as acompleterow of vertices that contains the AC-
CEPT termination vertexACCEPT, v, (s, q),7). ThenG,; can be assembled if and only if TM acceptsz.

We insistG; to be a complete row of vertices (occupyisg si, ..., s|z4+1, Wheres € {a, b, c}) to avoid
false positives. Note the size of the slot graph used in the proof is polynomial in the size of the:{remd
hence our simulation is IPSPACE. O

Corollary 6.2 6-DEGREE DGAPis PSPACE-complete.

7 Conclusion

In this paper, we define two new models of self-assembly and obtain the following complexity results: 4-
DEGREE AGAP isNP-complete; 5-DEGREE PAGAP iBNP-complete; #AGAP and SAGAP are
#P-complete; 6-DEGREE DGAP BSPACE-complete. One immediate open problem is to determine
the complexity of these problems with lower degrees. In addition, it would be nice to find approximation
algorithms for the optimization version of titéP-hard problems. Note AGAP can be solved in polynomial

15

time if only positive edges are permitted in gragh using a greedy heuristic. In contrast, when negative
edges are allowed, for each negative edge (v, v3), we need to decide the relative order for assemhling
andvy. Thusk negative edges will implg* choices, and we have to find out whether any of ti¥sehoices
can result in the assembly of the target graph. This is the component that makes the problem hard.

References

1. http://mrsec.wisc.edu/edetc/selfassembly/.

2. DNA triangles and self-assembled hexagonal tilingsAm. Chem. Socl26:13924—-13925, 2004.

3. L. Adleman. Towards a mathematical theory of self-assembly. Technical Report 00-722, University of Southern
California, 2000.

4. L. Adleman, Q. Cheng, A. Goel, and M. D. Huang. Running time and program size for self-assembled squares.
In Proceedings of the thirty-third annual ACM symposium on Theory of compptiggs 740-748. ACM Press,
2001.

5. L. Adleman, Q. Cheng, A. Goel, M. D. Huang, D. Kempe, P. M. de Espans, and P. W. K. Rothemund. Combi-
natorial optimization problems in self-assembly.Aroceedings of the thirty-fourth annual ACM symposium on
Theory of computingpages 23-32. ACM Press, 2002.

6. L. Adleman, Q. Cheng, A. Goel, M. D. Huang, and H. Wasserman. Linear self-assemblies: Equilibria, entropy,
and convergence rate. Bixth International Conference on Difference Equations and ApplicatROG1.

7. L. Adleman, J. Kari, L. Kari, and D. Reishus. On the decidability of self-assembly of infinite ribbons. In
Proceedings of the 43rd Symposium on Foundations of Computer Sgxages 530-537, 2002.

8. G. Aggarwal, M. H. Goldwasser, M. Y. Kao, and R. T. Schweller. Complexities for generalized models of
self-assembly. IfProceedings of 15th annual ACM-SIAM Symposium on Discrete Algorithms (S@&4es
880-889. ACM Press, 2004.

9. N. Bowden, A. Terfort, J. Carbeck, and G. M. Whitesides. Self-assembly of mesoscale objects into ordered
two-dimensional arraysScience276(11):233-235, 1997.

10. R. F. Bruinsma, W. M. Gelbart, D. Reguera, J. Rudnick, and R. Zandi. Viral self-assembly as a thermodynamic
process.Phys. Rev. Lett90(24):248101, 2003 June 20.

11. H. L. Chen, Q. Cheng, A. Goel, M. D. Huang, and P. M. de Espanes. Invadable self-assembly: Combining
robustness with efficiency. IRroceedings of the 15th annual ACM-SIAM Symposium on Discrete Algorithms
(SODA) pages 890-899, 2004.

12. Q. Chengand P. M. de Espanes. Resolving two open problems in the self-assembly of squares. Technical Report
03-793, University of Southern California, 2003.

13. Q. Cheng, A. Goel, and P. Moisset. Optimal self-assembly of counters at temperature fvoceedings of
the first conference on Foundations of nanoscience: self-assembled architectures and ge0ies

14. Matthew Cook, Paul W. K. Rothemund, and Erik Winfree. Self-assembled circuit patternrdNArBased
Computers 9volume 2943 of NCS pages 91-107, 2004.

15. K. Fujibayashi and S. Murata. A method for error suppression for self-assembling DNA til&NAmBased
Computing 10pages 284—-293, 2004.

16. E. Klavins. Directed self-assembly using graph grammarsfFolmdations of Nanoscience: Self Assembled
Architectures and Device2004.

17. E. Klavins, R. Ghrist, and D. Lipsky. Graph grammars for self-assembling robotic systefAsockedings of
the International Conference on Robotics and Automatifi4.

18. Eric Klavins. Toward the control of self-assembling systemsCdntrol Problems in Roboti¢solume 4, pages
153-168. Springer Verlag, 2002.

19. T.H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif, and N. C. Seeman. The construction, analysis,
ligation and self-assembly of DNA triple crossover complexkAm. Chem. Soc122:1848-1860, 2000.

20. M. G. Lagoudakis and T. H. LaBean. 2-D DNA self-assembly for satisfiabilityDNiA Based Computers,V
volume 54 ofDIMACS pages 141-154. American Mathematical Society, 2000.

21. M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its ApplicatiorSpringer Verlag, New
York, second edition, 1997.

22. D. Lichtenstein. Planar formulae and their usefAM J. Comput.11(2):329-343, 1982.

23. D. Liu, M. S. Wang, Z. X. Deng, R. Walulu, and C. D. Mao. Tensegrity: Construction of rigid DNA triangles

16

24,

25.

26.
27.

28.

29.

30.

31.

32.
33.
34.
35.
36.
37.
38.
39.

40.

41.

42.

with flexible four-arm dna junctionsl. Am. Chem. Socl126:2324—-2325, 2004.

C. Mao, W. Sun, and N. C. Seeman. Designed two-dimensional DNA holliday junction arrays visualized by
atomic force microscopyd. Am. Chem. Socl21:5437-5443, 1999.

A. A. Middleton. Computational complexity of determining the barriers to interface motion in random systems.
Phys. Rev. B59(3):2571-2577, 1999.

C. M. PapadimitriouComputational complexityAddison-Wesley Publishing Company, Inc., 1st edition, 1994.

J. H. Reif, S. Sahu, and P. Yin. Compact error-resilient computational DNA tiling assembli€socln10th
International Meeting on DNA Computingages 248-260, 2004.

R. M. Robinson. Undecidability and non periodicity of tilings of the planeventiones Math12:177-209,

1971.

P. W. K. Rothemund. Using lateral capillary forces to compute by self-assefitay. Natl. Acad. Sci. USA
97(3):984—-989, 2000.

P. W. K. RothemundTheory and Experiments in Algorithmic Self-AssemBlD thesis, University of Southern
California, 2001.

P. W. K. Rothemund and E. Winfree. The program-size complexity of self-assembled squares (extended abstract).
In Proceedings of the thirty-second annual ACM symposium on Theory of commpages 459-468. ACM
Press, 2000.

Phiset Sa-Ardyen, Natasa Jonoska, and Nadrian C. Seeman. Self-assembling DNA geaplre. Notes in
Computer Scien¢@568:1-9, 2003.

Rebecca Schulman, Shaun Lee, Nick Papadakis, and Erik Winfree. One dimensional boundaries for DNA tile
self-assembly. IMNA Based Computers 9olume 2943 o£ NCS pages 108-125, 2004.

Rebecca Schulman and Erik Winfree. Programmable control of nucleation for algorithmic self-assembly. In
DNA Based Computers 1ONCS, 2005.

David Soloveichik and Erik Winfree. Complexity of self-assembled shapesDNk Based Computers 10
LNCS, 2005.

A. Strasser, L. O’'Connor, and V.M. Dixit. Apoptosis signalidgnu. Rev. Biochent9:217-245, 2000.

H. Wang. Proving theorems by pattern recognitioBell Systems Technical JourndD:1-41, 1961.

E. Winfree and R. Bekbolatov. Proofreading tile sets: Error correction for algorithmic self-assemBI}MAIn
Based Computers, ®@olume 2943 o NCS pages 126-144, 2004.

E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman. Design and self-assembly of two-dimensional DNA
crystals.Nature 394(6693):539-544, 1998.

E. Winfree, X. Yang, and N. C. Seeman. Universal computation via self-assembly of DNA: Some theory and
experiments. In L. F. Landweber and E. B. Baum, editbidA Based Computers,Ivolume 44 ofDIMACS

pages 191-213. American Mathematical Society, 1999.

H. Yan, T. H. LaBean, L. Feng, and J. H. Reif. Directed nucleation assembly of DNA tile complexes for barcode
patterned DNA latticesProc. Natl. Acad. Sci. USA00(14):8103—-8108, 2003.

H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean. DNA-templated self-assembly of protein arrays
and highly conductive nanowireScience301(5641):1882-1884, 2003.

17

Appendices

A Some technical issues in proof of Theorem 6.1

This section discusses some technical points regarding the operation of the integrated scheme in Figure 9 (b).
Error elimination. During the assembly of computational vertices errors can happen as described in “our
modified TM simulation”. However, such errors will not disrupt the correct operation of our assembly system
for the following two reasons. First, the error cannot propagate horizontally. Second, thanks to the reversible
nature of our assembly system, the incorrectly assembled vertices will be popped off and eventually only the
correct simulation process can proceed to its full extent. As a consequencelifaddepts:, our simulation
can guarantee that our simulation will eventually follow a path to the final acceptance state; whildjif TM
rejectsz, no such path exists.
Edge weight assignment.1). The weight for the edge connecting vertiegs= z, andv/, is 2; while
the weight for an edge connecting and subsequent vertices other thérthat occupy slot is 0. This
ensures the correct operation of the cyclic gadget for the dummy slots. 2).The assembly of the first row (input
row) involves computational vertices with glue strength 2 (rather than 1) and hence weight 2 edges between
neighboring vertices in this row. Howevapo modification on the edge weight of the edges incident to the
knocking vertices and anchor vertices is required to accommodate this edge weight difference: the initial step
(a-b,b-z, x 1 a) is irreversible and it is straightforward to check tlzati « can occur successfully. 3). Except
for the edges connecting dummy vertices, no weight 2 edge exists between the computational vertices after
the evacuation of the input row. This is essential for upper bounding the number of vertices associated with
each slot: otherwise, an exponential number of popper vertices and anchor vertices would be required.

18

