
Complexity of Graph Self-Assembly in Accretive Systems and
Self-Destructible Systems�

John H. Reify Sudheer Sahuy Peng Yiny

Abstract

Self-assembly is a process in which small objects autonomously associate with each other to form
larger complexes. It is ubiquitous in biological constructions at the cellular and molecular scale and
has also been identified by nanoscientists as a fundamental method for building molecular scale struc-
tures. Recent years see convergent interest and efforts in studying self-assembly from mathematicians,
computer scientists, physicists, chemists, and biologists. However most complexity theoretic studies of
self-assembly utilize mathematical models with two limitations: 1) only attraction, while no repulsion, is
studied; 2) only assembled structures of two dimensional square grids are studied. These restrictions limit
the practical impact of the resulting complexity theoretic results. In this paper, we study the complex-
ity of the assemblies resulting from the cooperative effect of repulsion and attraction in a more general
setting of graphs. This allows for the study of a more general class of self-assembled structures than the
previous tiling model. We define two novel assembly models, namely the accretive graph assembly model
and the self-destructible graph assembly model, and identify one fundamental problem in them: the se-
quential construction of a given graph, referred to as Accretive Graph Assembly Problem (AGAP) and
Self-Destructible Graph Assembly Problem (DGAP), respectively. Our main results are: (i) AGAP is
NP-complete even if the maximum degree of the graph is restricted to 4 or the graph is restricted to be
planar with maximum degree 5; (ii) counting the number of sequential assembly orderings that result in a
target graph (#AGAP) is#P-complete; and (iii)DGAP isPSPACE-complete even if the maximum
degree of the graph is restricted to 6 (this is the firstPSPACE-complete result in self-assembly). We
also extend the accretive graph assembly model to a stochastic model, and prove that determining the
probability of a given assembly in this model is#P-complete.

1 Introduction

Self-assembly is the ubiquitous process in which small objects associate autonomously with each other to
form larger complexes. For example, atoms can self-assemble into molecules; molecules into crystals; cells
into tissues,etc. Recently, self-assembly has also been explored as a powerful and efficient mechanism for
constructing synthetic molecular scale objects with nano-scale features. This approach is particularly fruitful
in DNA based nanoscience, as exemplified by the diverse set of DNA lattices made from self-assembled
branched DNA molecules (DNA tiles) [2, 19, 23, 24, 39, 41, 42]. Another nanoscale example is the self-
assembly of peptide molecules [10]. Self-assembly is also used for larger scale construction, for example,
via the use of capillary forces [9, 29] or magnetic forces [1] to provide attraction and repulsion between
meso-scale tiles and other objects.

Building on classical Wang tiling models [28, 37] dating back to 1960s, Rothemund and Winfree [31]
in 2000 proposed an elegant discrete mathematical model for complexity theoretic studies of self-assembly
known as theTile Assembly Model. In this model, DNA tiles are treated as oriented unit squares (tiles). Each
of the four sides of a tile has a glue with a positive integral strength. Assembly occurs by accretion of tiles

�The work is supported by NSF ITR Grants EIA-0086015 and CCR-0326157, NSF QuBIC Grants EIA-0218376 and EIA-
0218359, and DARPA/AFSOR Contract F30602-01-2-0561.

yDepartment of Computer Science, Duke University, Durham, NC, USA.freif, sudheer, py g@cs.duke.edu

1

iteratively to an existing assembly, starting with a distinguishedseedtile. A tile can be “glued” to a position
in an existing assembly if the tile can fit in the position such that each pair of abutting sides of the tile and the
assembly have the same glue and the total strength of the glues is greater than or equal to thetemperature,
a system parameter. Research in this field largely focuses on studying the complexity of and algorithms for
(uniquely and terminally) producing assemblies with given properties, such as shape. It has been shown that
the construction ofn � n squares has a program size complexity (the minimum number of distinct types
of tiles required) of�(log n

log log n
) [4, 31]. The upper bound is obtained by simulating a binary counter and

the lower bound by analyzing the Kolmogorov complexity of the tiling system [21]. The model was later
extended by Adlemanet al. to include the time complexity of generating specified assemblies [4]. Later
work studies various topics, including combinatorial optimization, complexity problems, fault tolerance, and
topology changes, in the standard Tile Assembly Model as well as some of its variants [4, 5, 7, 8, 11, 12, 13,
15, 16, 17, 14, 20, 27, 30, 38, 33, 14, 35, 34].

Though substantial progress has been made in recent years in the study of self-assembly using the
above tile assembly model, which captures many important aspects of self-assembly in nature and in nano-
fabrications, the complexity of some other important aspects of self-assembly remains unexplored:

� Only attraction, while no repulsion, is studied. However, repulsive forces often occur in self-assembly.
For example, there is repulsion between hydrophobic and hydrophilic tiles [9, 29]; between tiles labeled
with magnetic pads of the same polarity [1]; and there is also static electric repulsion in molecular
systems,etc.. Indeed, the study of repulsive forces (negative edge weight) in the self-assembly system
was posed as an open question by Adleman and colleagues in [4]. Though there has been previous
work on the kinetics of such systems, e.g. Klavin’s “waterbug” model [18], no complexity theoretic
study has been directed towards such systems.

� Generally only assembled structures of two dimensional square grids are studied. In contrast, many
molecular self-assemblies using DNA and other materials involve the assembly of more diverse struc-
tures in both two and three dimensions. For example, Seeman’s group constructed self-assembled non-
regular graphs using DNA junction molecules as vertices and duplex DNA molecules as edges [32].

In this paper, we study the cooperative effect of repulsion and attraction in a graph setting. This approach
allows the study of a more general class of assemblies as described above.

We distinguish two systems, namely theaccretive systemand theself-destructible system. In an accretive
system, an assembled component cannot be removed from the assembly. In contrast, in the self-destructible
system, a previously assembled component can be “actively” removed from the assembly by the repulsive
force exerted by another newly assembled component. In other words, the assembly can (partially)destruct
itself. We define theaccretive graph assembly modelfor the former and theself-destructible graph assembly
modelfor the latter.

We first define an accretive assembly model and study a fundamental problem in this model: the sequential
construction of a given graph, referred to as Accretive Graph Assembly Problem (AGAP). Our main result
for this model is that AGAP isNP-complete even if the maximum degree of vertices in the graph is restricted
to 4; the problem remainsNP-complete even for planar graphs (planar AGAPor PAGAP) with maximum
degree 5. We also prove that the problem of counting the number of sequential assembly orderings that lead
to a target graph (#AGAP) is#P-complete. We further extend the AGAP model to a stochastic model, and
prove that determining the probability of a given assembly in this model (stochastic AGAP or SAGAP) is
#P-complete.

If we relax the assumption that an assembled component always stays in the assembly, repulsive force
between assembled components can cause self-destruction in the assembly. Self-destruction is a common
phenomenon in nature, at least in biological systems. One renowned example is apoptosis, or programmed
cell death [36]. Programmed cell death can be viewed as a self-destructive behavior exercised by a multi-
cellular organism, in which the organism actively kills a subset of its constituent cells to ensure the normal
development and function of the whole system. It has been shown that abnormalities in programmed cell

2

death regulation can cause a diverse range of diseases such as cancer and autoimmunity [36]. It is also
conceivable that self-destruction can be exploited in self-assembly based nano-fabrication: the components
that serve to generate intermediate products but are unnecessary or undesirable in the final product should be
actively removed. We provide an illustrative abstract example in Figure 5 and Figure 6 in Section 5.

To the best of our knowledge, our self-destructible graph assembly model is the first complexity theo-
retic model that captures and studies the fundamental phenomenon of self-destruction in self-assembly sys-
tems. Our model is different from previous work on reversible tiling systems [3, 6, 40]. These previous
studies use elegant thermodynamic or stochastic techniques to investigate the reversible process of tile as-
sembly/disassembly: an assembled tile has a probability of “falling” off the assembly in a kinetic system. In
contrast, our self-destructible system models the behavior of a self-assembly system that “actively” destructs
parts of itself.

To model the self-destructible systems, we define a self-destructible graph assembly model, and consider
the problem of sequentially constructing a given graph, referred to as the Self-Destructible Graph Assembly
Problem (DGAP). We prove that DGAP isPSPACE-complete even if the graph is restricted to have
maximum degree 6.

The rest of the paper is organized as follows. We first define the accretive graph assembly model
and the AGAP problem in Section 2. In this model, we first show theNP-completeness of AGAP and
PAGAP(planar AGAP) in Section 3 and then show the#P-completeness of SAGAP (stochastic AGAP)
in Section 4. Next, we define the self-destructible graph assembly model and theDGAP problem in Section 5
and show thePSPACE-completeness of DGAP in Section 6. We close with a discussion of our results in
Section 7.

2 Accretive Graph Assembly Model

Let N andZ denote the set of natural numbers and the set of integers, respectively. Agraph assembly system
is a quadrupleT = hG = (V;E); vs; w; �i, whereG = (V;E) is a given graph with vertex setV and edge
setE, vs 2 V is a distinguishedseed vertex, w : E ! Z is a weight function (corresponding to the glue
function in the standard tile assembly model [31]), and� 2 N is the temperatureof the system (intuitively
temperature provides a tunable parameter to control the stability of the assembled structure). In contrast to
the canonical tile assembly model in [31], which allows only positive edge weight, we allow both positive and
negative edge weights, with positive (resp. negative) edge weight modeling the attraction (resp. repulsion)
between the two vertices connected by this edge. We will see that this simple extension makes the assembly
problem significantly more complex.

Roughly speaking, given a graph assembly systemT = hG; vs; w; �i, G is sequentially constructibleif
we can attach all its vertices one by one, starting with the seed vertex; a vertexx can be assembled if the
supportto it is equal to or greater than the system temperature� , where support is the sum of the weights of
the edges betweenx and its assembled neighbors.

Figure 1 gives an example. Here the graph is shown in Figure 1 (a) and the temperature is set to 2. Figure 1
(b) gives a step-by-step illustration of the assembly sequence. Note that ifh gets assembled beforee, then the
whole graph can get assembled: an example assembly ordering can bea � b � c � d � f � g � h � i � e.
In contrast, if vertexe gets assembled beforeh, the graph cannot be assembled:h can be assembled only if it
gets support frombothg andi; while i cannot get assembled without the support fromh.

Formally, given a graph assembly systemT = hG; vs; w; �i, G is sequentially constructibleif there
exists an ordering ofall the vertices inV , OT = (vs = v0 � v1 � v2 � � � � � vn�1) such thatP

vj2NG(vi);j<i
w(vi; vj) � �; 0 < i � n � 1, whereNG(vi) denotes the set of vertices adjacent tovi

in G. The orderingOT is called anassembly orderingfor G. �O(vi) =
P

vj2NG(vi);j<i
w(vi; vj) is called

thesupportof vi in orderingO. When the context is clear, we simply useO and�(vi) to denote assembly
ordering and support, respectively.

3

g

b

h i

1
2

2 1 2
e

f
1

ca

2 2

2 2

d

-1 1

(a)

2

h

1

2 1 2

b

d

ca b

e
f

1

2 2

2 2

d

-1 1

g h i

1
2

2 1 2

ca b

e
f

1

2 2

2 2

-1 1

g h i

1
2

2 1 2

d

ca b

e
f

1

2 2

2

-1 1

g h i

1
2

2 1 2

d

ca b

e
1

2 2

2 2

-1 1

g h i

1
2

2 1 2

fd

1

ca b

e
f

1

2 2

2 2

d

-1 1

g h i

1
2

2 1 2

ca b

e
f

1

2 2

2 2

-1

1

g h i

1

1 2

d

2

2

ca b

e
f

1

2 2

2 2

-1 1

g h i

d

2

2 1 2

d

ca b

e
f

1

2 2

2 2

-1 1

g h i

1
2

2 1 2

2

c

f

i

a

e
1

2 2

2 2

-1 1

g

(b)

Figure 1: (a) An example of graph assembly in the accretive model. (b) A step-by-step illustration of the example
assembly sequence.

We define theaccretive graph assembly problemas follows,
Definition 2.1 Accretive Graph Assembly Problem (AGAP): Given a graph assembly systemT = hG; vs; w; �i

in the accretive model, determine whether there exists an assembly orderingO for G.
The above model isaccretivein the sense that once a vertex is assembled, it cannot be ‘popped off’ by

the subsequent assembly of any other vertex. If we relax this assumption, we will obtain a self-destructible
model, which is described later in Section 5.

3 AGAP and PAGAP areNP-complete

3.1 4-DEGREE AGAP isNP-complete

Lemma 3.1 AGAP is inNP.

Proof: Given an assembly ordering of the vertices, sequentially check whether each vertex can be assembled
(with sufficient support). This takes polynomial time. �

4

top vertices

literal vertices

bottom vertex

x2 x3x1

vs

x2 x3 x2 �x2 x3x1�x1x1 �x3

(a) (b)

Figure 2: (a) A clause gadget. The top vertices and the bottom vertex are colored black; the literal vertices are white.
(b) A graph construction corresponding to an AGAP reduction from 3SAT formula(x1 _ x2 _ x3)^ (�x1 _ �x3 _ x2)^
(x1_ �x2_x3). An edge between two literal vertices is depicted as a dashed arch and assigned weight -1; all other edges
have weight 2.

Recall that theNP-complete 3SAT problem asks: Given a Boolean formula� in conjunctive normal form
with each clause containing 3 literals, determine whether� is satisfiable [26]. Also recall that 3SAT remains
NP-complete for formulas in which each variable appears at most three times, and each literal at most
twice [26]. We will reduce this restricted 3SAT to AGAP to prove AGAP isNP-hard.
Lemma 3.2 AGAP isNP-hard.
Proof: Given a 3SAT formula� where each variable appears at most three times, and each literal at most
twice, we will construct below an accretive graph assembly systemT = hG; vs; w; �i for �. We will then
show that the satisfiability problem of� can be reduced (in logarithmic space) to the sequential constructibility
problem ofG in T .

For each clause in�, construct aclause gadgetas in Figure 2 (a). For each literal, we construct a
literal vertex(colored white in Figure 2 (a)). We further addtop vertices(black) above andbottom vertices
(black) below the literal vertices as in Figure 2 (a). We next take care of the structure of formula� as follows.
Connect all the clause gadgets sequentially via their top vertices as in Figure 2 (b); connect two literal vertices
if and only if they correspond to two complement literals. This produces graphG. Designate the leftmost top
vertex as the seed vertexvs. We next assign weight�1 to an edge between two literal vertices and weight2 to
all the other edges. Finally, set the temperature� = 2. This completes the construction ofT = hG; vs; w; �i.
For a concrete example, see Figure 2 (b).

The following proposition implies the lemma.
Proposition 3.3 There is an assembly orderingO for T if and only if� is satisfiable.
)

First we show that if� can be satisfied by truth assignmentT , then we can derive an assembly orderingO

based onT .
Stage 1.Starting from the seed vertex, assemble all the top vertices sequentially. This can be easily done

since each top vertex will have support 2, which is greater than or equal to� = 2, the temperature.
Stage 2.Assemble all the literal vertices assignedtrue. Since twotrue literals cannot be complement

literals, no two literal vertices to be assembled at this stage can have a negative edge between them. Hence
all thesetrue literal vertices will receive a support 2 (� � = 2).

Stage 3. Assemble all the bottom vertices. Note that truth assignmentT satisfies� implies that every
clause in� has at least onetrue literal. Thus every clause gadget inG has at least one literal vertex (a
true literal vertex) assembled in stage 2, which in turn allows us to assemble the bottom vertex in that clause
gadget.

Stage 4.Assemble all the remaining literal vertices (thefalse literal vertices). Observe that any remain-
ing literal vertexv has support4 from its already assembled neighboring top vertex and bottom vertex and
thatv can have negative support at most�2 from its assembled literal vertex neighbors (recall that each literal
vertex can have at most two literal vertex neighbors since each variable appears at most three times in�).
Hence the total support forv will be at least2 (� �).
(

5

C

D

E

B

A

�x

�z

z

x

L

w y
�y�w 4

4

4

2
2

4
4

4
4

4

−10

−10
−10

−6

4

A

B

C

D

E

4
4

4

4

4

22

2
2

2

2

24

4 2

4 y

z v2

v3

w
�w �y

�x

�z

x
v1 = vs

v4

(a) (b)

Figure 3: (a) and (b) are respectively an identifying graph and a PAGAP graph construction corresponding to the
P3SAT formulaA^B ^C ^D^E = (x_ y _w)^ (x_ y)^ (w _ z)^ (�y _ �z)^ (�w _ �x). The larger (smaller) white
circles represent clauses (literals); black vertices in (b) represent assisting vertices. Note that each clause is adjacent
to at most three literals; each literal is adjacent to at most two clauses. The grey loop in (a) is loopL; integers in (b)
indicate edge weights.

Suppose that there exists an assembly orderingO, then we can derive a satisfying truth assignmentT for �.
For each literal vertex, assign its corresponding literaltrue if it appears inO beforeall of its literal ver-
tex neighbors (this assures no two complement literals are both assignedtrue); otherwise assign itfalse.

To show thatT satisfies�, we only need to show every clause contains at least onetrue literal. For
contradiction, suppose there exists a clause gadgetA with threefalse literal vertices, wherev is the lit-
eral vertex assembled first. However,v cannot be assembled: it has support2 from the top vertex; no support
from the bottom vertex (v gets assembled first and hence the bottom vertex inA cannot be assembled before
v); at least�1 negative support from one of its literal vertex neighbors (v is assignedfalse); the total support
of v is thus at most1, less than temperature� = 2. Contradiction. HenceT must satisfy�. �

The following theorem follows immediately from Lemma 3.1 and Lemma 3.2.
Theorem 3.4 AGAP isNP-complete.
Let k-DEGREE AGAP be the AGAP in which the largest degree of any vertex in graphG is k. Observe
that the largest degree of any vertex in the graph construction in the proof of Lemma 3.2 is4. Hence we have
Corollary 3.5 4-DEGREE AGAP isNP-complete.

3.2 5-DEGREE PAGAP isNP-complete

We next study the planar AGAP (PAGAP) problem, where the graphG in the assembly systemT is planar.
First, note that the following lemma is trivially true.
Lemma 3.6 PAGAP is inNP.

We show that PAGAP isNP-hard by a reduction from theNP-hard planar three-satisfiability problem
(P3SAT) [22], defined in the following way. Given a 3SAT formula�, construct itsidentifying graphG =

(V;E) as follows: the vertex setV is flj l is a variableg
S
fcj c is a clauseg; the edge setE is f(l; c)j l is a

variable in clausecg. If G is planar,� is referred to as aplanar 3SAT (P3SAT) formula. P3SAT problem is
to decide the satisfiability of a P3SAT formula�.

We use the identifying graph construction in [25], which represents each variablex with two vertices
(one forx and one for�x) connected by an edge. See Figure 3 (a) for an example. We use the following
two properties of this construction in our proof: 1) There exists a loopL that passes between all pairs of

6

literals without intersecting any edge between a literal and a clause; 2) Any literal can belong to at most two
clauses [25].

Lemma 3.7 PAGAP isNP-hard.

Proof: Given an arbitrary P3SAT formula�, we first construct an assembly systemT = hG; vs; w; �i.
We then show that the satisfiability problem of� can be reduced (in logarithmic space) to the sequential
constructibility problem ofG in T .

We construct a graphG = (V;E) by modifying the identifying graph of�: along the loopL, add an
assisting vertexvi between every two consecutive pairs of literal vertices and connectvi with all these four
vertices as shown in Figure 3 (b). Next, we assign edge weights. The weight of an edge between a literal
and a clause is4; the weight of an edge between a literalx and its complement�x is �6 if neither of them
is connected to more than one clause; it is�10 if at least one of the literals is connected to two clause
vertices. The weight of an edge connecting an assisting vertex and a literal vertexx is 4 if the weight of edge
(x; �x) is �10 andx is connected to only one clause vertex; otherwise it is2. Finally, we select an arbitrary
assisting vertex, sayv1, as the seed vertexvs and set the temperature� = 2. This completes the construction
of T .

We next prove the following proposition, which completes the proof of the lemma.
Proposition 3.8 If and only if� is satisfiable, there is an assembly orderingO.
)

Suppose there exists a truth assignmentT that satisfies�, we give the following assembly ordering.
Stage 1.Assemble all the assisting vertices andtrue literals as follows. Starting from the seed vertex,

following the clockwise direction along loopL, we assemble alternatelytrue literals (one ofx and �x is
necessarilytrue) and assisting vertices, till we reach the seed vertex again. For example, a satisfying truth
assignment(x; y; z; w) = (true;true;true;false) in Figure 3 (b) will give the assembly orderingvs = v1 �

y � v2 � z � v3 � �w � v4 � x.
Stage 2.Assemble all the clauses. SinceT satisfies�, each clause contains at least onetrue literal and

hence is now connected to at least onetrue literal vertex assembled in stage 1. Thus all the clause vertices
can be assembled now.

Stage 3.Assemble all thefalse literals and thus complete the whole graph. Since all the neighbors of
eachfalse literal have already been assembled, it is easy to verify that there is enough support for it.
(

Suppose that there exists an assembly orderingO, we derive fromO a truth assignmentT by assigning a
literal vertexx true if it appears before�x in O; assign itfalse otherwise. We claim thatT satisfies�.

For contradiction, assume there is a clause, sayA, unsatisfied, with all its literalsx, y, andz assigned
false. This implies that�x (resp.�y, �z) appears beforex (resp.y, z) in O. Assume w.l.o.g. thatx � y � z in
O. SinceA is adjacent toonlyx, y, andz, vertexx must appear beforeA in O. However, by the edge weight
assignment, ifx appears after its complement�x, then it can be assembled only afterall the clause vertices
connected tox are assembled. In particular, we must have clauseA appears beforex. Contradiction. We thus
conclude thatT must satisfy�. �

Putting together Lemma 3.6 and Lemma 3.7, we have
Theorem 3.9 PAGAP isNP-complete.

Corollary 3.10 5-DEGREE PAGAP isNP-complete.

7

e4

v2

u2

v3

u1

v1

u3

e5e1

e2

e3

c5

v2

c2

c1

c3

v1 v3

u1 u3
vs

c4

u2

(a) (b)

Figure 4: (a) and (b) show an example bipartite graphB and the corresponding graphG used in the proof of Lemma 4.2,
respectively. In (b),ci’s denote connector vertices (colored white);u1 is the seed vertex. The weight of an edge
connecting two connector vertices (dashed line) is�4; the weight of any other edge is2.

4 #AGAP and SAGAP are#P-complete

4.1 #AGAP is#P-complete

We now consider a more general version of AGAP: given an accretive graph assembly systemT = hG; vs; w; �i

and atarget vertex setVt � V , determine if there exists an ordering~O(V; Vt) of V such thatVt is assembled
after weattemptassembling each vertexv 2 V sequentially according to~O. Vertexv will be assembled
if there is enough support; otherwise it will not be.~O is called the assembly ordering ofV for Vt. When
the context is clear, we simply call it assembly ordering forVt and denote it by~O. Note that the assembly
ordering ~O is an ordering on all the vertices inV , but we only care about the assembly of the target vertex set
Vt: the assembly of vertices inV n Vt is neither required nor prohibited. ForVt = V , the general AGAP is
then precisely the standard AGAP we have been studying. The problem of counting the number of assembly
orderings forVt � V under this general AGAP model is referred to as #AGAP.

Lemma 4.1 #AGAP is in #P.

We next show #AGAP is#P-hard, using a reduction from the#P-complete problem PERMANENT,
the problem of counting the number of perfect matchings in a bipartite graph [26].

Lemma 4.2 #AGAP is#P-hard.

Proof: Given a bipartite graphB = (U; V;E) with two partitions of verticesU andV and edge setE, where
U = fu1; : : : ; ung, V = fv1; : : : ; vng, andE = fe1; : : : ; emg (recall that by definition of bipartite graph,
there is no edge between any two vertices inU and no edge between any two vertices inV), we construct an
assembly systemT = hG; vs; w; �i. First, we derive graphG by adding vertices and edges toB (see Figure 4
for an example): on each edgeek add a splittingconnector vertexck; add an edge (dashed line) between two
connector vertices if they share a same neighbor inU ; connectui andui+1 for i = 1; : : : ; n � 1. Next,
assign weight�4 to an edge between two connector vertices; assign weight2 to all the other edges. Finally,
designateu1 as the seed vertexvs, and set the temperature� = 2. The target vertex setVt isU

S
V .

A crucial property ofG is that the assembly of one connector vertexc will make all of c’s connector ver-
tex neighbors unassemblable, due to the negative edge connectingc and its neighbors. Consequently, starting
from a vertexu 2 U , only one connector vertex and hence only onev 2 V can be assembled. For a concrete
example, see Figure 4 (b): starting fromu1, if we sequentially assemblec1 andv1, vertexc1 will render c2
unassemblable, and hence the assembly sequenceu1 � c2 � v2 is not permissible.

We first show that if there is no perfect matching inB, there is no assembly ordering forU
S
V . If there

is no perfect matching inB, then there existsS � V s.t. jN(S)j < jSj (Hall’s theorem), whereN(S) � U is
the set of neighboring vertices to the vertices inS in original graphB. However, as argued above, one vertex
in U can lead to the assembly of at most one vertex inV . ThusjN(S)j < jSj implies that at least one vertex
in S remains unassembled. Hence, no assembly ordering exists that can assemble all vertices inU

S
V .

Next, when there exists perfect matching(s) inB, we can show that each perfect matching inB corre-
sponds to afixednumber of assembly orderings forU

S
V . First note that the total number of vertices in

8

graphG is 2n +m (recall thatm is the number of edges inB and hence number of connector vertices in
G), giving a totals = (2n +m)! permutations. We divides by the following factors to get the number of
assembly orderings forU

S
V .

1. For every matching edgeek betweenu 2 U andv 2 V , we have to follow the strict orderu � ck � v,
whereck is the connector vertex onek. This is ensured by our construction as argued above. There are
altogethern such matching edges. So we need to further divides by (3!)n.

2. For then vertices inU , we have to follow the strict order of assembling the vertices from left to right,
and hence we need to divides by n!.

3. Denote bydi the degree ofui in graphB. For thedi connector vertices corresponding to thedi edges
incident onui, the connector vertex corresponding to the matching edge must be assembled first, and
thus, we need to further divides by �n

i=1di.

Putting together 1), 2), and 3), we have that each perfect matching inB corresponds to (2n+m)!
(3!)n(n!)(�n

i=1di)

assembly orderings forU
S
V in G. This completes the proof. �

Lemma 4.1 and Lemma 4.2 imply
Theorem 4.3 #AGAP is#P-complete.

4.2 SAGAP is#P-complete

An intimately related question to counting the total number of assembly orderings is the problem to calculate
the probability of assembling a target structure in a stochastic setting. We extend the accretive graph self-
assembly model to stochastic accretive graph self-assembly model as follows. Given a graphG = (V;E),
wherejV j = n, starting with the seed vertexvs, what is the probability that the target vertex setVt � V gets
assembled if anytime any unassembled vertex can be picked with equal probability? This problem is referred
to as stochastic AGAP (SAGAP).

Since any unassembled vertex has equal probability of being selected and the assembly has to start with
the seed vertex, the total number of possible orderings are(n � 1)!. Then SAGAP asks precisely how
many of these(n � 1)! orderings are assembly orderings for the target vertex setVt. Thus, #AGAP can be
trivially reduced to SAGAP, and the reduction is obviously a logarithmic space parsimonious reduction. We
immediately have
Theorem 4.4 SAGAP is #P-complete.

5 Self-Destructible Graph Assembly Model

The assumption in the above accretive model is that once a vertex is assembled, it cannot be “popped off”
by the subsequent assembly of another vertex. Next, we relax this assumption and obtain a more general
model: theself-destructible graph assembly model. In this model, the incorporation of a vertexa that exerts
repulsive force on an already assembled vertexb can makeb unstable and hence “pop”b off the assembly. This
phenomenon renders the assembly system an interesting dynamic property, namely (partial) self-destruction.

Theself-destructible graph assembly systemoperates on aslot graph. A slot graph ~G = (S;E) is a set
of “slots” S connected by edgesE � S � S. Each “slot”s 2 S is associated with a set of verticesV (s).
During the assembly process, a slots is either empty or is occupied by a vertexv 2 V (s). A slot s occupied
by a vertexv is denoted ashs; vi.

A self-destructible graph assembly systemis defined asT = h ~G = (S;E); V;M;w; hss ; vsi; �i, where
~G = (S;E) is a given slot graph with slot setS and edge setE � S � S; V =

S
s2S V (s) is the set of

vertices; the association ruleM � S � V is a binary relation betweenS andV , which maps each slots to

9

Slot Graph

sf

sish

sd

sb sc

sg

ss = sa

se

Vertex Set

{ , }

{ }

{ , }

Association

{ }

{ }{ }{ }

{ }

{ }{ }

se
sf

scsa sb

sd

sg sh si

(a) (b) (c)

Edge Weights

sf
sd

sg sh si sh si

sb sc sb scsa

sg

sd

0

2 -22

2

0

2 2

1 3

2
1

1

sa

sfse

11

1
se

Target Graph

sf

2

scsb

sd

sg sh si

0

2 2

1 3

2
1

2

2 0 1

sa

se

(d) (e)

Figure 5: An example self-destructible graph assembly system.

its associated vertex setV (s) (note that the setsV (s) arenot necessarily disjoint); for any edge(sa; sb) 2 E,
we define a weight functionw : V (sa)� V (sb) ! Z (here a weight is determined cooperatively by an edge
(sa; sb) and the two vertices occupyingsa andsb); hss; vsi is a distinguishedseed slotss occupied by vertex
vs; � 2 N is thetemperatureof the system. The size of a self-destructible graph assembly system is the bit
representation of the system.

A configurationof ~G is a functionA : S ! V
S
femptyg, whereemptyindicates a slot being un-

occupied. For ease of exposition, a configuration is alternatively referred to as agraph, denoted asG. When
the context is clear, we simply refer to a slot occupied by a vertex as avertex, for readability.

Given the above self-destructible graph assembly system, we aim at assembling a target graph, i.e. reach-
ing a target configuration,Gt, starting with the seed vertexhss; vsi and using the followingunit assembly
operations. In each unit operation, we temporarily attach a vertexv to the current graphG and obtain a graph
G0, and then repeat the following procedure until no vertex can be removed from the assembly: inspect all the
vertices in current graphG0; find the vertexv0 with the smallestsupport, i.e. the sum of the weights of edges
betweenv0 and its assembled neighbors, and break the ties arbitrarily (note thatv0 can bev); if the support to
v0 is less than� , removev0. This procedure ensures that when a vertex that repulses its assembled neighbors
is incorporated in the existing assembly, all the vertices whose support drops below system temperature will
be removed. However, in the case when a vertex to be attached exerts no repulsive force to its already as-
sembled neighbors, the above standard unit assembly operation can be simplified as follows: a vertex can be
assembled if the total support it receives from its assembled neighbors is equal to or greater than the system
temperature� – this is exactly the same as the operation in the accretive graph assembly model.

Figure 5 and Figure 6 give a concrete example of a self-destructible graph assembly systemT and a
sequence of unit assembly operations that assemble a target graphGt in T . Figure 5 illustrates the assembly
systemT = h ~G =(S;E); V; M; w; hss; vsi; �i. Here, slotsa is designated as the distinguished seed slotss
and temperature� is set to2. Figure 5 (a) depicts the slot graph~G = (S;E), whereS = fsa; sb; sc; sd; se;

sf ; sg; sh; sig,E = f(sa; sb); (sb; sc); (sa; sd); (sb; se); (sc; sf); (sd; se); (se; sf); (sd; sg); (se; sh); (sf ; si);

(sg; sh); (sh; si)g. Figure 5 (b) gives the vertex setV = fblack; greyg. Figure 5 (c) shows the association

10

(1) (2) (3)

(4) (5) (6) (7)

(8a) (8b) (9)

sa sb sc

sd
se

sishsg

1

2 2

1
2

2 1 1

sa sb

sd
se

sishsg

sf

sc

sf

si

sc

1

2 2

2
1

2

2 1 1

sg sh

Sa sb

sd
se

2 2

1 3

22

2 1

sa

sd

shsg si

scsb

se

0

2 2

1 3

2
1

2

2 0 1

2

sa

sd sf
se

sh sisg

scsb

sf

scsa sb

se
sd

sg sh si

1

2 2

1 3

2
1

2

2 1 1

-2

sa sb

sd
se

sg sh si

sf

sc

sf

2 2

2

2

sa sb

sd
se

sc

sf

sishsg

sf

2

sa sb

sd
se

sc

sf

sishsg

2
2

sa sb

sd
se

sc

sf

sishsg

2 2
2

sa sb

sd
se

sc

sf

sishsg

2 2

1
2

2 1

Figure 6: The sequence of operations that assemble the target graphGt.

ruleM : V (se) = fblack; greyg; V (s) = fblackg, for s 2 S n se. Figure 5 (d) illustratesw. A numerical
value indicates the weight of an edge incident to two occupied slots. The left panel of Figure 5 (d) describes
the cases when both slots incident to an edge are occupied by black vertices; the right panel describes the
case when slotse is occupied by a grey vertex but its neighboring slot is occupied by a black vertex. For
example, the weight for edge(se; sh), when bothse andsh are occupied with black vertices, is�2. This
negative weight is further indicated by the dashed edge. Figure 5 (e) depicts the target graph (configuration)
Gt, where each the slot inS is occupied by a black vertex, i.e.A(s) = black for anys 2 S.

An example sequence of unit assembly operations that sequentially assembles the target graphGt is
illustrated step by step in Figure 6. We start withhss; blacki, wheress = sa. In step (1), a black vertex is put
into slotsb and stays there, since the support it receives from the black vertex occupying slotsa is 2, which
is greater than or equal to the system temperature� = 2. In step (5), a grey vertex occupies slotse and is
attached to existing assembly. It stays in slotse since it receives a total support of 2 from its neighboring
assembled vertices (support 1 from the black vertex occupying slotsb and support 1 from the black vertex
occupying slotsd). Step (8) has two stages (8a) and (8b). In step (8a), a black vertex is temporarily put into
slot sh. Now the grey vertex occupying slotse has the least support among all the vertices in this temporary
assembly. Since its support 1 is less than temperature� = 2, the grey vertex inse is removed from the
assembly in step (8b), according to the unit assembly operation rule. Now no vertex can be removed since
all vertices have support greater than or equal to� = 2. In step (9), a black vertex is put into slotse and this
completes the assembly of the target graph.

Here we emphasize that in the above example, the grey vertex at slotse serves as a “stepping stone” for
assembling the target graph: its incorporation into the assembly enables the subsequent assembly of a black

11

vertex at slotsf , which in turn effects the assembly of a black vertex atsi. However, at this stage, the grey
vertex at slotse becomes a barrier for the progress of the assembly towards the target configuration – it must
be popped off the assembly to evacuate slotse for the assembly of a black vertex atse. This is achieved by
the incorporation of a black vertex at slotsh. This is precisely the power of (partial) self-destruction: the
system actively gets rid of the undesirable components to ensure the progress of further assembly. Finally,
we point out that the grey vertex associated withse is indispensable for the assembly of the target graph. The
reader can verify that without this grey vertex, the target graph cannot be sequentially constructed.

In the above example, the assembly of black vertex at slotsh “deterministically” and “irreversibly” pops
off the grey vertex at slotse. However, the self-destructible graph assembly model can also exhibit interesting
non-deterministic, reversible behavior under the following circumstance: the assembly of componenta pops
off componentb, while the immediate re-assembly of componentb can in turn knock off the newly assembled
componenta. For a concrete example, now assume that in Figure 6, the weight for edge(sh; si) (when slots
sh andsi are occupied by black vertices) is 2 instead of 3. Then at step (8b) either the black vertex at slotsh
or the grey vertex at slotse can be removed, since both vertices have support1 < 2 = � and we break ties
arbitrarily. For the same reason, in the case when the grey vertex atse is removed, an immediate reassembly
of a grey vertex at slotse can result in the disassembly of the black vertex atsh. In this sense, the system at
this stage becomes “non-deterministic” and “reversible”. This property is used in the construction of a cyclic
gadget, which provides the basis for ourPSPACE-complete proof in Section 6.

Now we are ready to define the Self-Destructible Graph Assembly Problem (DGAP).

Definition 5.1 Self-Destructible Graph Assembly Problem (DGAP): Given a self-destructible graph as-
sembly systemT = hG = (S;E); V;M;w; hss ; vsi; �i and a target graph (configuration)Gt, determine
whether there exists a sequence of assembly operations such thatGt can be assembled starting fromhss; vsi.

6 DGAP isPSPACE-complete

Theorem 6.1 DGAP isPSPACE-complete.

Proof: Recall that thePSPACE-complete problem IN-PLACE ACCEPTANCE is as follows: given a
deterministic Turing machine (TM for short)U and an input stringx, doesU acceptx without leaving the
first jxj + 1 symbols of the string [26]? We reduce IN-PLACE ACCEPTANCE to DGAP using a direct
simulation of a deterministic TMU onx with self-destructible graph assembly inPSPACE.

The proof builds on 1) a classical technique for simulating TM using self-assembly of square tiles [28, 31],
which takes exponential space for decidingPSPACE-complete languages; and 2) our new cyclic gadget,
which helps the classical TM simulation to reuse space and thus achieve aPSPACE simulation. We will
first reproduce the classical simulation; next introduce our modification to the classical simulation; then
describe our cyclic gadget; finally integrate the cyclic gadget with the modified TM simulation to obtain a
PSPACE simulation and thus conclude the proof.

Classical TM simulation. The classical scheme uses the assembly of vertices on a 2D square grid to
mimic a TM’s transition history [28, 31]. Consecutive configurations of TM are represented by successive
horizontal rows of assembled-vertices.

Given a TMU(Q;�; Æ; q0), whereQ is a finite set of states,� is a finite set of symbols,Æ is the transition
function, andq0 2 Q is the initial state, we construct a self-destructible assembly systemT = hG =

(S;E); V;M;w; hss; vsi; �i as follows. The slot graphG = (S;E) is an infinite 2D square grid; each node
of the grid corresponds to a slots 2 S. A vertexv 2 V is represented as a quadruplev = ha; b; c; di, wherea,
b, c, andd are referred to as the North, East, South, and West‘glues’ (see Figure 7). Each gluex is associated
with an integral strengthg(x). More specifically, we construct the following vertices:

� For eachs 2 �, construct asymbol vertexhs;
; s;
i, where
 is a special symbol=2 �.

� For eachhq; si 2 Q� �, constructstate verticeshhq; si;
; s;
!
q i andhhq; si;

q ; s;
i.

12

N

S
W E

s

s s s
transition verticessymbol vertices state vertices termination vertices

s’s’

qs qsqsqs
q q q’ q’

qsqs rejectaccept

Figure 7: Vertices used in the basic TM simulation.

� For each transitionhq; si ! hq0; s0; Li (resp.hq; si ! hq0; s0;Ri), where L (resp. R) is the head moving

direction “Left” (resp. “Right”), construct atransition vertexhs0;
; hq; si;

q0i (resp.hs0;
!

q0; hq; si;
i).

� For transitionhq; si ! ACCEPT (resp. REJECT), construct atermination vertexhACCEPT;
; hq; si;
i

(resp.hREJECT;
; hq; si;
i).

The glue strengthg(hq; si) is set to2; all other glue strengths are 1. Mapping relationM : every vertex in
V can be mapped to every slot inS. We next describe weight functionV � V � E ! Z. Consider two
verticesv1 = ha; b; c; di andv2 = ha0; b0; c0; d0i connected by edgee, if e is horizontal andv1 lies to the East
(resp. West) ofv2, the weight function isg(b0; d) (resp.g(b; d0)); if e is vertical andv1 lies to the North (resp.
South) ofv2, the weight function isg(c; a0) (resp.g(a; c0)); whereg(x; y) = g(x) (resp.0) if x = y (resp.
x 6= y). In other words, the edge weight for two neighboring vertices is the strength of the abutting glues, if
the abutting glues are the same; otherwise it is 0.

It is straightforward to show the assembly of the vertices inV on the slot graphG = (S;E) simulates the
operation of the TMU . Figure 8 (a) gives a concrete example to illustrate the simulation process as in [31].
Here we assume the bottom row in the assembly in Figure 8 (a) is pre-assembled.

Our modified TM simulation. We add two modifications to the classical simulation and obtain the
scheme in Figure 8 (b): 1) a set of vertices are added to assemble an input row (bottom row in the figure) and
2) a dummy column is added to the leftmost of the assembly. For the construction, see the self-explanatory
Figure 8 (b). The leftmost bottom vertex is the seed vertex and a thick line indicates a weight 2 edge. The
reason for adding the dummy column is as follows. The glue strengthg(hq; si) is 2 in Figure 8 (a); this is
necessary to initiate the assembly of a new row and hence a transition to next configuration. However, due
to a subtle technical point discussed in Appendix A, we cannot allow weight 2 edge(s) in a column unless
all the edges in this column have weight 2. So we add the leftmost dummy column of vertices connected by
weight 2 edges, and this enables us to setg(hq; si) = 1 and thus avoid weight 2 edge other than those in the
dummy column.

The modified scheme simulates a TM on inputx with the head initially residing ats0 and never moving
to the left ofs0. The assembly proceeds from bottom to top; within each row, it starts from the leftmost
dummy vertex and proceeds to the right (note the difference in the assembly sequence in Figure 8 (a) and (b),
as indicated by the thick grey arrows). Unfortunately, this assembly sequence can introduce error: e.g. in

place of a state vertexv1 = hhq; sii;

q ; si;
i, a symbol vertexv2 = hsi;
; si;
i can get assembled sincev1

andv2 share the same South glue and the same West glue. Fortunately, this mistake can be corrected by our
final assembly system that performs aself-destructiblesimulation of a Turing machine, as described later.

Our cyclic gadget.The above strategy to simulate TM by laying out its configurations one above another
can result in a graph with height exponential in the size of the input (jxj): the height of graph is precisely
the number of transitions plus one. A crucial observation is that once rowi is assembled, rowi � 1 is no
longer needed: rowi holds sufficient information for assembling rowi + 1 and hence for the simulation
to proceed. Thus, we can evacuate rowi � 1 and reuse the space to assemble a future row, say rowi +

2. Using this trick, we can shrink the number of rows from an exponential number to a constant. The
self-destructible graph assembly model can provide us with precisely this power. To realize this power of
evacuating and reusing space, we construct acyclic gadget, shown Figure 9 (a). The gadget contains three
kinds of vertices: thecomputational vertices(a, b, andc) that carry out the actual simulation of the Turing
machine; theknocking vertices(x, y, andz) that serve to knock off the computational vertices and thus

13

symbol vertices

transition vertices

1

1

1

1

state vertices

0

1

1

1

1 1

0 0

0 0

1

0

0 1

1

1

1

1

1

1

0

1

0 1
0

0

1

1

A; 0 ! B; 1; R

B; 0 ! A; 1; L

A; 1 ! C; 1;RC
A1

A0 A0

A0

A1

A1

C1

BB
B0

B0

B0

A
A1

A0

B0

B

A

B

A

A

A1

CC

A0

B0

A

A

B

A

A

0

1

1

1

0

0

0

1

1

1

1

1

1

1

1

1

1

i=3

i=2

i=1

i=0

j=1 j=2 j=3j=0

CC

B

A
�

�

C1

B0

B0

A1

A0

A0

A1

�

�

�

�

�

�1 �2 �2 �3
�0

�1�0

A

B

(a) (b)

Figure 8: (a) An example classical simulation of a Turing machineU(Q;�; Æ; q0), whereQ = fA;B;Cg; � = f0; 1g;
transition functionÆ is shown in the figure;q0 = A. The top of the left panel shows two symbol vertices; below are
some example transition rules and the corresponding state vertices and transition vertices. The right panel illustrates
the simulation ofU on input001 (simulated as the bottom row, which is assumed to be preassembled), according to the
transition rules in the figure; the head’s initial position is on the leftmost vertex. Each transition ofU adds a new row.
(b) Our modified scheme. The leftmost bottom vertex is the seed vertex. The leftmost column is the dummy column.
In both (a) and (b), a thick line indicates a weight 2 edge; a thin line indicates weight 1; thick grey arrows indicate the
assembly sequence.

release the space; theanchor vertices(x0, y0, andz0) that anchor the knocking vertices. Edge weights are
labeled in the figure.

For ease of exposition, we introduce a little more notation. The event in which a new vertexb is attached
to a pre-assembled vertexa is denoted asa � b; the event in whicha pops offb is denoted asa a b.

We next describe the operation of the cyclic gadget. We require that anchor verticesx0, y0, andz0 and
computational vertexa are pre-assembled. The anchor vertices and computational vertices will keep getting
assembled and then popped off in a counterclockwise fashion. First,b is attached toa (eventa � b). Thenx
is attached tob (eventb � x). At this point,x has total support1 from b, x0, anda (providing support2, 2,
and�3, respectively);a has total support�1 from b andx (providing support 2 and -3, respectively). Since
temperature is2, x will knock off a (x a a). Next, we haveb � c followed byc � y. At this point,y has total
support1 from c andy0; b has total support1 from x andc. Therefore, eithery a b or b a y can happen,
but y a b is in the desired counterclockwise direction. Next, we will have cycles of (reversible) events. In
summary, the following sequence of events occur, providing the desired cyclicity:
a � b, b � x, x a a; b � c, c � y, y a b; (c � a, a a x, a � z, z a c; a � b, b a y, b � x, x a a; b � c, c a z, c � y, y a b)�;

The steps in the() will keep repeating. Note that the steps in the() are reversible, which facilitates our
reversible simulation of a Turing machine below.

Integrating cyclic gadget with TM simulation. We next integrate the cyclic gadget with the modified
TM simulation in Figure 8 (b). In the resulting scheme, we obtain a reversible simulation of a deterministic
TM on a slot graph of constant height, by evacuating old rows and reusing the space: rowi is evacuated after
the assembly of rowi+ 1, providing space for the assembly of rowi+ 3.

Figure 9 (b) illustrates the integrated scheme. Slot rowsA, B, andC correspond to rowsi = 3r,
i = 3r + 1, and i = 3r + 2 in Figure 8 (b), respectively. Letjxj = n. A is a sequence of slotsA =

[a0; a1; : : : ; an+1]; similarly, B = [b0; b1; : : : ; bn+1] andC = [c0; c1; : : : ; cn+1] as in Figure 9 (b). Slotsa0,
b0, andc0 are dummy slots (corresponding to the dummy column in Figure 8 (b)). For eachaj , bj, andcj , we
construct a cyclic gadget by introducing slotsxj , yj, zj, x0j, y

0
j, andz0j .

The edge weights are shown in the figure. We emphasize that the weight for an edge between two
computational vertices (vertices inA, B, andC) u andv is set to the glue strength ifu andv have the same
glue on their abutting sides; otherwise it is 0. This is consistent with the scheme in Figure 8 (b) and helps
to ensure the proper operation of the computational assembly. In contrast, the weight for any other edge is

14

−3

−32

−3 2

2

2

2

2 2

2

2

ba

c

x0

z0 y0

x

yz

−4

1

1

1

1

1

1

2
3−4

2

2
−3

3 2

2

3 2

−4 −3

3

3

2

3

1
1

1

−3

2

2

y1y0 x0 x2

a1a0

b0 b1

c0 c1

a2 a3

b2 b3

c2 c3

B

C

A

vs

v0

s z1

y0

1
y0

3

x0

2
x0

1x0

0

y0

0
y0

2

z3

z0

3
z0

2
z0

1z0

0

z0 z2

x0

3

y2 y3 x3x1

(a) (b)

Figure 9: (a) The construction and operation of our cyclic gadget. The counterclockwise grey cycle indicates the desired
sequence of events. (b) The integrated scheme. Grey edges have weight 2. Unlabeled black edges have weight 1.vs
indicates the seed vertex;z0 is the seed slot.v0s indicates a distinguished computational “seed”.

always set to the value shown in Figure 9 (b), regardless of the actual computational vertices present in the
slots inA, B, andC; this ensures the proper operation of the cyclic gadget.

Slot z00 is designated as the seed slotss and one of its associated vertices as the seed vertexvs and the
temperature is again set to2.

The assembly proceeds as follows. First, the frame of anchoring vertices (subgraph with grey edges) will
be assembled, starting from the seed vertex atz00. The seed vertex atz00 will pull in a distinguished computa-
tional vertexv0s (corresponding to the seed vertex in Figure 8 (b)) at slota0, andv0s subsequently initiates the
assembly of the input row (corresponding to the bottom row in Figure 8 (b)). Then the computational ver-
tices will assemble, simulating the process shown in Figure 8 (b). Meanwhile, the cyclic gadget functions
along each layer ofaj , bj, andcj (corresponding to columnj in Figure 8 (b)), effecting the reusing of space.
More specifically, vertices corresponding to those in rowsi = 3r, i = 3r + 1, andi = 3r + 2 in Figure 8
(b) will be assembled inA, B, andC respectively. Similar to the process in Figure 9 (a), rowi + 1 gets
assembled with the support from rowi, and subsequently pulls in popper vertices, which knock off rowi and
thus evacuate space for future rowi+ 3 to assemble. Within a row, the vertices are knocked off sequentially
from left to right, starting with the dummy vertex.

Errors that occur during the assembly can be subsequently corrected as described in Appendix A. Some
other subtle technical points are also discussed in Appendix A.

Concluding the proof. We set the target graphGt as acompleterow of vertices that contains the AC-
CEPT termination vertexhACCEPT;
; hs; qi;
i. ThenGt can be assembled if and only if TMU acceptsx.
We insistGt to be a complete row of vertices (occupyings0, s1, : : : , sjxj+1, wheres 2 fa; b; cg) to avoid
false positives. Note the size of the slot graph used in the proof is polynomial in the size of the inputjxj and
hence our simulation is inPSPACE. �

Corollary 6.2 6-DEGREE DGAP isPSPACE-complete.

7 Conclusion

In this paper, we define two new models of self-assembly and obtain the following complexity results: 4-
DEGREE AGAP isNP-complete; 5-DEGREE PAGAP isNP-complete; #AGAP and SAGAP are
#P-complete; 6-DEGREE DGAP isPSPACE-complete. One immediate open problem is to determine
the complexity of these problems with lower degrees. In addition, it would be nice to find approximation
algorithms for the optimization version of theNP-hard problems. Note AGAP can be solved in polynomial

15

time if only positive edges are permitted in graphG, using a greedy heuristic. In contrast, when negative
edges are allowed, for each negative edgee = (v1; v2), we need to decide the relative order for assemblingv1
andv2. Thusk negative edges will imply2k choices, and we have to find out whether any of these2k choices
can result in the assembly of the target graph. This is the component that makes the problem hard.

References

1. http://mrsec.wisc.edu/edetc/selfassembly/.
2. DNA triangles and self-assembled hexagonal tilings.J. Am. Chem. Soc., 126:13924–13925, 2004.
3. L. Adleman. Towards a mathematical theory of self-assembly. Technical Report 00-722, University of Southern

California, 2000.
4. L. Adleman, Q. Cheng, A. Goel, and M. D. Huang. Running time and program size for self-assembled squares.

In Proceedings of the thirty-third annual ACM symposium on Theory of computing, pages 740–748. ACM Press,
2001.

5. L. Adleman, Q. Cheng, A. Goel, M. D. Huang, D. Kempe, P. M. de Espans, and P. W. K. Rothemund. Combi-
natorial optimization problems in self-assembly. InProceedings of the thirty-fourth annual ACM symposium on
Theory of computing, pages 23–32. ACM Press, 2002.

6. L. Adleman, Q. Cheng, A. Goel, M. D. Huang, and H. Wasserman. Linear self-assemblies: Equilibria, entropy,
and convergence rate. InSixth International Conference on Difference Equations and Applications, 2001.

7. L. Adleman, J. Kari, L. Kari, and D. Reishus. On the decidability of self-assembly of infinite ribbons. In
Proceedings of the 43rd Symposium on Foundations of Computer Science, pages 530–537, 2002.

8. G. Aggarwal, M. H. Goldwasser, M. Y. Kao, and R. T. Schweller. Complexities for generalized models of
self-assembly. InProceedings of 15th annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
880–889. ACM Press, 2004.

9. N. Bowden, A. Terfort, J. Carbeck, and G. M. Whitesides. Self-assembly of mesoscale objects into ordered
two-dimensional arrays.Science, 276(11):233–235, 1997.

10. R. F. Bruinsma, W. M. Gelbart, D. Reguera, J. Rudnick, and R. Zandi. Viral self-assembly as a thermodynamic
process.Phys. Rev. Lett., 90(24):248101, 2003 June 20.

11. H. L. Chen, Q. Cheng, A. Goel, M. D. Huang, and P. M. de Espanes. Invadable self-assembly: Combining
robustness with efficiency. InProceedings of the 15th annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 890–899, 2004.

12. Q. Cheng and P. M. de Espanes. Resolving two open problems in the self-assembly of squares. Technical Report
03-793, University of Southern California, 2003.

13. Q. Cheng, A. Goel, and P. Moisset. Optimal self-assembly of counters at temperature two. InProceedings of
the first conference on Foundations of nanoscience: self-assembled architectures and devices, 2004.

14. Matthew Cook, Paul W. K. Rothemund, and Erik Winfree. Self-assembled circuit patterns. InDNA Based
Computers 9, volume 2943 ofLNCS, pages 91–107, 2004.

15. K. Fujibayashi and S. Murata. A method for error suppression for self-assembling DNA tiles. InDNA Based
Computing 10, pages 284–293, 2004.

16. E. Klavins. Directed self-assembly using graph grammars. InFoundations of Nanoscience: Self Assembled
Architectures and Devices, 2004.

17. E. Klavins, R. Ghrist, and D. Lipsky. Graph grammars for self-assembling robotic systems. InProceedings of
the International Conference on Robotics and Automation, 2004.

18. Eric Klavins. Toward the control of self-assembling systems. InControl Problems in Robotics, volume 4, pages
153–168. Springer Verlag, 2002.

19. T. H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif, and N. C. Seeman. The construction, analysis,
ligation and self-assembly of DNA triple crossover complexes.J. Am. Chem. Soc., 122:1848–1860, 2000.

20. M. G. Lagoudakis and T. H. LaBean. 2-D DNA self-assembly for satisfiability. InDNA Based Computers V,
volume 54 ofDIMACS, pages 141–154. American Mathematical Society, 2000.

21. M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications. Springer Verlag, New
York, second edition, 1997.

22. D. Lichtenstein. Planar formulae and their uses.SIAM J. Comput., 11(2):329–343, 1982.
23. D. Liu, M. S. Wang, Z. X. Deng, R. Walulu, and C. D. Mao. Tensegrity: Construction of rigid DNA triangles

16

with flexible four-arm dna junctions.J. Am. Chem. Soc., 126:2324–2325, 2004.
24. C. Mao, W. Sun, and N. C. Seeman. Designed two-dimensional DNA holliday junction arrays visualized by

atomic force microscopy.J. Am. Chem. Soc., 121:5437–5443, 1999.
25. A. A. Middleton. Computational complexity of determining the barriers to interface motion in random systems.

Phys. Rev. E, 59(3):2571–2577, 1999.
26. C. M. Papadimitriou.Computational complexity. Addison-Wesley Publishing Company, Inc., 1st edition, 1994.
27. J. H. Reif, S. Sahu, and P. Yin. Compact error-resilient computational DNA tiling assemblies. InProc. 10th

International Meeting on DNA Computing, pages 248–260, 2004.
28. R. M. Robinson. Undecidability and non periodicity of tilings of the plane.Inventiones Math, 12:177–209,

1971.
29. P. W. K. Rothemund. Using lateral capillary forces to compute by self-assembly.Proc. Natl. Acad. Sci. USA,

97(3):984–989, 2000.
30. P. W. K. Rothemund.Theory and Experiments in Algorithmic Self-Assembly. PhD thesis, University of Southern

California, 2001.
31. P. W. K. Rothemund and E. Winfree. The program-size complexity of self-assembled squares (extended abstract).

In Proceedings of the thirty-second annual ACM symposium on Theory of computing, pages 459–468. ACM
Press, 2000.

32. Phiset Sa-Ardyen, Natasa Jonoska, and Nadrian C. Seeman. Self-assembling DNA graphs.Lecture Notes in
Computer Science, 2568:1–9, 2003.

33. Rebecca Schulman, Shaun Lee, Nick Papadakis, and Erik Winfree. One dimensional boundaries for DNA tile
self-assembly. InDNA Based Computers 9, volume 2943 ofLNCS, pages 108–125, 2004.

34. Rebecca Schulman and Erik Winfree. Programmable control of nucleation for algorithmic self-assembly. In
DNA Based Computers 10, LNCS, 2005.

35. David Soloveichik and Erik Winfree. Complexity of self-assembled shapes. InDNA Based Computers 10,
LNCS, 2005.

36. A. Strasser, L. O’Connor, and V.M. Dixit. Apoptosis signaling.Annu. Rev. Biochem., 69:217–245, 2000.
37. H. Wang. Proving theorems by pattern recognition ii.Bell Systems Technical Journal, 40:1–41, 1961.
38. E. Winfree and R. Bekbolatov. Proofreading tile sets: Error correction for algorithmic self-assembly. InDNA

Based Computers 9, volume 2943 ofLNCS, pages 126–144, 2004.
39. E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman. Design and self-assembly of two-dimensional DNA

crystals.Nature, 394(6693):539–544, 1998.
40. E. Winfree, X. Yang, and N. C. Seeman. Universal computation via self-assembly of DNA: Some theory and

experiments. In L. F. Landweber and E. B. Baum, editors,DNA Based Computers II, volume 44 ofDIMACS,
pages 191–213. American Mathematical Society, 1999.

41. H. Yan, T. H. LaBean, L. Feng, and J. H. Reif. Directed nucleation assembly of DNA tile complexes for barcode
patterned DNA lattices.Proc. Natl. Acad. Sci. USA, 100(14):8103–8108, 2003.

42. H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean. DNA-templated self-assembly of protein arrays
and highly conductive nanowires.Science, 301(5641):1882–1884, 2003.

17

Appendices

A Some technical issues in proof of Theorem 6.1

This section discusses some technical points regarding the operation of the integrated scheme in Figure 9 (b).
Error elimination. During the assembly of computational vertices errors can happen as described in “our

modified TM simulation”. However, such errors will not disrupt the correct operation of our assembly system
for the following two reasons. First, the error cannot propagate horizontally. Second, thanks to the reversible
nature of our assembly system, the incorrectly assembled vertices will be popped off and eventually only the
correct simulation process can proceed to its full extent. As a consequence, if TMU acceptsx, our simulation
can guarantee that our simulation will eventually follow a path to the final acceptance state; while if TMU

rejectsx, no such path exists.
Edge weight assignment.1). The weight for the edge connecting verticesvs = z0 andv0s is 2; while

the weight for an edge connectingz00 and subsequent vertices other thanv0s that occupy slota0 is 0. This
ensures the correct operation of the cyclic gadget for the dummy slots. 2).The assembly of the first row (input
row) involves computational vertices with glue strength 2 (rather than 1) and hence weight 2 edges between
neighboring vertices in this row. Howeverno modification on the edge weight of the edges incident to the
knocking vertices and anchor vertices is required to accommodate this edge weight difference: the initial step
(a�b, b�x, x a a) is irreversible and it is straightforward to check thatx a a can occur successfully. 3). Except
for the edges connecting dummy vertices, no weight 2 edge exists between the computational vertices after
the evacuation of the input row. This is essential for upper bounding the number of vertices associated with
each slot: otherwise, an exponential number of popper vertices and anchor vertices would be required.

18

