
Compact Error Resilient Computational DNA Tilings

John H. Reif
�
, Sudheer Sahu

�
, and Peng Yin

�
Department of Computer Science, Duke University

Box 90129, Durham, NC 27708-0129, USA.�
reif,sudheer,py � @cs.duke.edu

Abstract. The self-assembly process for bottom-up construction of nanostruc-
tures is of key importance to the emerging scientific discipline Nanoscience.
However, algorithmic self-assembly at the molecular scale is prone to a quite
high rate of error. Such high error rate is a major barrier to large-scale experi-
mental implementation of algorithmic DNA tilings. The goals of this paper are to
develop theoretical methods for compact error-resilient algorithmic DNA tilings
and to analyze these methods by thermodynamic analysis and computer simula-
tion. Prior work by Winfree provided an innovative approach to decrease tiling
self-assembly mismatch errors without decreasing the intrinsic error rate � of as-
sembling a single tile. However, his technique resulted in a final structure larger
than the original one (four times larger for decreasing the error to ��� , nine times
for to ���). In this paper, we describe various compact error-resilient tiling meth-
ods that do not increase the size of the tiling assembly. These methods apply
to the assembly of Boolean arrays which perform input sensitive computations
(among other computations). Our 2-way (3-way) overlay redundancy construc-
tion decreases the error rate from � to approximately � � (� �), without increasing
the size of the assembly. As in Winfree’s constructions, the number of distinct tile
types required is also increased in our error-resilient tiling constructions. These
results were further validated using computer simulation.

1 Introduction

Self-assembly is a process in which simple objects associate into large (and complex)
structures. The self-assembly of DNA tiles can be used both as a powerful computa-
tional mechanism [8, 13, 21, 24, 27] and as a bottom-up nanofabrication technique [18].
Periodic 2D DNA lattices have been successfully constructed with a variety of DNA
tiles, for example, double-crossover (DX) DNA tiles [26], rhombus tiles [12], triple-
crossover (TX) tiles [7], “4x4” tiles [30], triangle tiles [9], and hexagonal tiles [3]. Ape-
riodic barcode DNA lattices have also been experimentally constructed [29]. In addition
to forming extended lattices, DNA tiles can also form tubes [10, 15].

Self-assembly of DNA tiles can be used to carry out computation, by encoding data
and computational rules in the sticky ends of tiles [23]. Such self-assembly of DNA
tiles is known as algorithmic self-assembly or computational-tilings. Researchers have
experimentally demonstrated a one-dimensional algorithmic self-assembly of triple-
crossover DNA molecules (TX tiles), which performs a 4-step cumulative XOR com-
putation [11]. A one-dimensional “string” tiling assembly was also experimentally con-
structed that computes an XOR table in parallel [28]. Recently, two dimensional algo-
rithmically self-assembled DNA crystals were constructed that demonstrate the pattern

of Sierpinski triangles [16] and the pattern of a binary counter [1]. However, these two
dimensional algorithmic crystals suffer quite high error rates. Reducing such errors is
thus a key challenge in algorithmic DNA tiling self-assembly.

How to decrease such errors? There are primarily two approaches. The first one is
to decrease the intrinsic error rate � by optimizing the physical environment in which a
fixed tile set assembles [27], by improving the design of the tile set using new molecular
mechanism [4, 6], or by using novel materials. The second approach is to design new tile
sets that can reduce the total number of errors in the final structure even with the same
intrinsic error rate [5, 17, 25]. Three kinds of errors have been studied in the direction
of the second approach, namely, the mismatch error, the facet error, and the nucleation
error. Here in this paper, we are interested in the study of the mismatch error. The
mismatch error is first studied by Winfree [25]. Winfree designs a novel proof reading
tile set, which decreases mismatch errors without decreasing the intrinsic error rate � .
However, his technique results in a final structure that is larger than the original one
(four times larger for decreasing the error to �
	 , nine times for ���).

One natural improvement to Winfree’s construction is to make the design more
compact. Here we report construction schemes that achieve performance comparable
to Winfree’s proofreading tile set without scaling up the assembled structure. We will
describe our work primarily in the context of self-assembling Sierpinsky triangles and
binary counters, but note that the design principle can be applied to a more general
setting. The basic idea of our construction is to overlay redundant computations and
hence force consistency in the scheme (in similar spirit as in [25]). The idea of using
redundancy to enhance the reliability of a system constructed from unreliable individual
components goes back to von Neumann [19].

The rest of the paper is organized as follows. In Section 2, we introduce the algorith-
mic assembly problem by reviewing Winfree’s abstract Tile Assembly Model (aTAM)
and kinetic Tile Assembly Model (kTAM) [25]. In Section 3, we describe our scheme
that decreases the error rate from � to ���	 . In Section 4, this scheme is further improved
to ������� using a three-way overlay redundancy technique. Two concrete constructions
are given in Section 5 and empirical study with computer simulation of our tile sets is
conducted. We conclude with discussions about future work in Section 6.

2 Algorithmic Assembly Problems

2.1 Algorithmic Assembly in Abstract Tile Assembly Model

The growth process of a tiling assembly is elegantly captured by an abstract Tile As-
sembly Model (aTAM) proposed by Winfree [14], which builds on the tiling model
initially proposed by Wang in 1960 [20]. In this model, each of the four sides of a tile
has a glue (also called pad) and each glue has a type and a positive integral strength.
Assembly occurs by the accretion of tiles iteratively to an existing assembly, starting
with a special seed tile. A tile can be “glued” to a position in an existing assembly if
the tile can fit in the position such that each pair of adjacent pads of the tile and the

S

1000

0 0 01

1 1

1

11

00

0

0 0

0 0

0 0 0 0

a

a

a

a

a

0 1 10

S 0 a

0

0

Pads

0

0

1

1

1

0Tiles

Binary Counter

00

0

1

00

1

1

1

0

0

1

1

1

0

0

0 0

00

0

0

0

0

0

0

0

0

0

0

0

1

1

0

1

1

1

0

1

00

1

00

10

0

00

0

1 1

1

1

1

1

0

0

10

00 0

(a)

S

0

0

0

00

0

0

1

11

11

1

1

1 1 1 1

1

1

1

0 0 1 0 1

1 0

1

0 1 10

S 1 1

0

1

0

1

01

0

1
0

1

0

10

1

1

00
1

0

11

1

1

0

0

1

1

1

0

1

0

1

0

1 1

1

0

1

1

1

1

1

Pads

1

1

Tiles

1

Sierpinsky Tiling

1
1

1

1 0

1

01

1

1

0

0

0

1
1 0

0
00

0

0 00 0
0

0

(b)

Fig. 1. (a) Binary counter tiling assembly. (b) Sierpinsky triangle tiling assembly. In both (a) and
(b), the pads and the tile set are shown on the left and the corresponding assembled structures
are shown on the right. The pads of strength 2 have black borders while the strength 1 pads are
border-less. The first row of tiles on the left are four internal tiles (computational tiles); the second
row are three frame tiles, one of which is a special seed tile (labeled with �)

assembly have the same glue type and the total strength of the these glues is greater
than or equal to the temperature, a system parameter.

As a concrete example, we describe a binary counter constructed by Winfree [14] in
Figure 1 (a). Here, the temperature of the system is set to 2. Two adjacent pads (glues)
on neighboring tiles can be glued to each other if they are of the same type. The assem-
bly starts with the seed tile � at the lower right corner and proceeds to the left and to the
top by the accreation of individual tiles. First, the reverse L shaped frame, composed
of the frame tiles is assembled. Note that the glue strength between two neighbouring
frame tiles is 2, which is greater than or equal to the temperature, and hence the assem-
bly of the frame tiles can carry through. Next, the internal tiles are assembled. Since the
glue strength of a pad on an internal tile is 1, the assembly of an internal tile requires
cooperative support from two other already assembled tiles. More specifically, after the

������������������
������������������

���������������
���
��

��
��
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!
"�"�"�""�"�"�""�"�"�""�"�"�""�"�"�""�"�"�""�"�"�"

#�#�#�#�##�#�#�#�##�#�#�#�##�#�#�#�##�#�#�#�##�#�#�#�##�#�#�#�##�#�#�#�#
$�$�$�$�$$�$�$�$�$$�$�$�$�$$�$�$�$�$$�$�$�$�$$�$�$�$�$$�$�$�$�$$�$�$�$�$

%�%�%�%�%%�%�%�%�%%�%�%�%�%%�%�%�%�%%�%�%�%�%%�%�%�%�%%�%�%�%�%
&�&�&�&&�&�&�&&�&�&�&&�&�&�&&�&�&�&&�&�&�&&�&�&�&

'�'�'�'�''�'�'�'�''�'�'�'�''�'�'�'�''�'�'�'�''�'�'�'�''�'�'�'�'
(�(�(�((�(�(�((�(�(�((�(�(�((�(�(�((�(�(�((�(�(�(

)�)�)�))�)�)�))�)�)�))�)�)�))�)�)�))�)�)�))�)�)�)
��*�**�*�*�**�*�*�**�*�*�**�*�*�**�*�*�**�*�*�*

U(i,j) U(i−1,j)

V(i,j)

V(i,j−1)

+-,�.0/2143�57698

+-,:.0/;5<6>=?3�8

+-,:.0/;5<698
V(i+1,j)

V(i,j-1)

V(i,j)

V(i,j+1)

V(i-1,j)

+ , .0/@=A3�57698

+-,:.0/;5<6B1C3
8

Fig. 2. Tile
+ , .0/;5<698

takes input D .0/E1F3�57698 and G .0/;5<6H1I3�8 ; determines G .0/;57698KJ D .0/E13L57698NMPORQ G .0/;576S1T3�8 and D .0/U5V698WJ D .0/21C3�5<6982MPO � G .0/;5<6B1C3
8 ; displays G .0/;5<698
assembly of the frame, the frame tile X and frame tile Y immediately neighbouring the
seed � tile cooperatively form a binding site for an internal � tile that has label � on
its left side and label Y on its bottom side. And this � tile can attach itself at this site.
This in turn produces further growing sites for Y internal tiles on top of and to the left
of this just assembled � tile. Thus the growth can go on inductively by the accretion of
appropriate individual tiles. It is straight forward to verify that the accretion of the tiles
forms a binary counter with each row representing a binary number. As another concrete
example, the tile set in Figure 1 (b) forms a Sierpinsky triangle [2]. Though the above
two examples appear simple, it has been proven that algorithmic assembly of tiles holds
universal computing power by simulating a one dimensional cellular automaton [22].

Note that each internal tile performs two computations: the right pad and bottom
pad of each pad serve as two input bits; the left pad represents an output bit as the result
of binary ZR[R\ of the two input bits; the upper pad represents the result of the binary]_^�`

operation of the two input bits (Recall that
]-^�`

is exclusive
^�`

, a binary operator
that outputs bit 1 if the two input bits are different and 0 otherwise) .

By modifying the internal computational tiles and let the left pad represent an output
bit as the result of binary

]-^�`
of the two input bits, we obtain a set of tiles that can

self-assemble into a Sierpinsky triangle [2] (Figure 1 (b)).
The above two assemblies serve as illustrating examples for the general algorithmic

assembly problem considered in this paper, the assembly of a Boolean array. A Boolean
array assembly is an acbed array, where the elements of each row are indexed overf Y_gLhPhLh
giakjl�nm from right to left and the elements of each column are indexed overf Y_gLhPhLh
g�dojp��m from bottom to top. The bottom row and right most column both have

some given values. Let qsr<t�gvuRw be the value of the t -th (from the right) bit on the u -th
row (from the bottom) displayed at position rVt�gvuxw and communicated to the positionrVt�gyu{zI��w . Let |Hr<t�gyuRw be a Boolean value communicated to the position r<t}zI��gyuRw . Fort�~���gPhLhPh
g�a�j4� and u�~���gPhLhPh
g�dkj4� , we have q�rVt�gyuRwE~l|HrVt@j4��gyuRw ^�� � q�rVt�gyu�j4�:w
and |Hr<t�gvuRw�~�|�rVt�j���gyuRw ^�� 	 q�rVt�gyu�jl��w , where

^n� � and
^�� 	 are two Boolean

functions, each with two Boolean arguments and one Boolean output. See Figure 2 for
an illustration.

The binary counter shown in Figure 1 (a) is an a�be�x� Boolean binary array. In
a binary counter, the bottom row has all Y s and the u -th row (from the bottom) is the
binary representation of counter value u , for uK~�Y_gPhLhPh
g����lj�� . Note that the t -th bit
is t -th from the right – this is in accordance with the usual left to right binary notation
of lowest precision bits to highest precision bits. qsr<t�gyuRw represents the value of the t -th
(from the right) counter bit on the u -th row (from the bottom), and |�rVt�gyuRw is the value
of the carry bit from the counter bit at position r<t�gyuRw . In the binary counter, we haveqsr<Y-gyuRwE~�q�r<Y-gyu}j���w]-^�` � ; qsr<t�gyuRwE~�|�rVtPj���gvuRw]-^�` q�rVt�gvu}j���w for t�~���gPhPhLh
gia�j�� ;|HrVt�gyuRwS~�|HrVt�j���gvuRw�ZR[R\�qsr<t�gyu�j���w . Hence

^�� � is the
]_^�`

operation and
^�� 	 is

the ZR[R\ operation. The Sierpinsky triangle shown in Figure 1 (b) is an a�b�a Boolean
binary array, where the bottom row and right most column all have � s; its

^n� � and^n� 	 operators are both
]-^�`

.
To construct a Boolean array assembly, we make each side of each tile, denoted�2� rVt�gyuRw , a binary valued pad. The bottom, right, top, and left pads of tile

��� rVt�gyuRw rep-
resent the values of q�rVt�gyusj��:w (as communicated from the tile below

��� rVt�gvu�jl��w),|HrVt�jp��gyuRw (as communicated from the tile on its right
�}� rVt�j���gyuRw), q�rVt�gyuRw (as com-

puted by q�rVt�gyuWj��:w ^�� � |Hr<t�j���gyuRw), and |Hr<t�gyuRw (as computed by q�rVt�gyuWj��:w ^�� 	 |HrVt:j��gyuRw), respectively. In the practical context of DNA tiling assemblies, a determined
value qsr<t�gvuRwE~�� can be displayed by the tile

��� rVt�gvuxw using, for example, an extruding
stem loop of single strand DNA. Note that such assembly requires only � tile types in
addition to frame tiles, but results in rather small scale error-free assemblies (with
the actual size contingent on the probability of single pad mismatch between adjacent
tiles).

2.2 Thermodynamic Error Analysis in Kinetic Tile Assembly Model

Experimental construction of Boolean array assemblies has shown that such algorith-
mic assemblies are error prone. In particular, the experimental construction of Sierpin-
sky triangles suffers a pad mismatch rate � of �9� to �LYR� [16]. To analyze the error rate,
Winfree further extended the above aTAM model to a kinetic Tile Assembly Model
(kTAM), which includes rates both for tiles to associate to (forward rate) and to dis-
sociate from (reverse rate) growing assemblies [25]. We reproduce Winfree’s kTAM
model below for completeness.

Winfree’s kTAM model computes the forward and reverse rates as thermodynamic
parameters. The forward rate is determined solely by the concentration of tiles, but not
the type of the tiles. When the concentration of the tiles is fixed, the absolute forward
rate is given by ��� ~I� ���monomer tile N~I� ��¡�¢2£W¤�¥ g

where ¦¨§ª©>~�jK«¬ �monomer <®
d is a unitless free energy that measures the monomer,
i.e. tile, concentration in the system.

In contrast, the reverse reaction rate depends inversely exponentially on the number
of base pair bonds that must be broken for the tile to dissociate from the assembly. It is
given by �L¯ ° ± ~�� ¯ ° ± ~�� � ¡�¢ ± £�²7³ g
where ¦�´Uµ¶~¸·�¦�®n¹ � is unitless free energy corresponding to the dissociation of a
single sticky end, and º is the number of such sticky ends.

It has been shown that when ¦�§S© is a little smaller than �n¦�´Uµ , the algorithmic
self-assembly under temperature 2 proceeds with optimal error rate. Intuitively, when¦¨§S©�»I��¦�´Uµ , the assembly occurs near melting temperature of the system. Under such
conditions, the self-assembly can achieve equilibrium, and the probability of observing
a particular assembly ¼ is given by

Pr r7¼�w½~ �¾ ¡�¢2£E¿ÀWÁ with
¾ ~lÂ À�Ã ¡�¢N£Ä¿À Ã Á g

where ¦�r7¼�w½~FÅ�¦ §ª© j�t;¦ ´Uµ is the free energy of the assembly, Å is the number of tiles
in the assembly, t is the number of mismatches in the assembly, and

¾
is the partition

function. As such, an Å -assembly with ·�t more mismatches will occur
¡�Æ�Ç £W²y³

less
likely.

Now let ¼ Ç be the collection of assemblies with t mismatches in the assembly and
let � Ç be the number of the distinct types of ¼ Ç assemblies. In particular, ¼ � is the
unique correct assembly and � � ~k� . In addition, ¼ � represents the assemblies with
exactly one mismatch. Since there are altogether �9Å bonds in an Å assembly, � � ~��9Å .
Then we have

Pr r7¼ � wE~ � ¼ � ÈIÉÇÊ � � ¼ Ç (1)

~ �È ÉÇÊ � � ¼ Ç <® � ¼ � (2)

~ ��>zp� � ¡ ¢N£W²y³ zË� 	 ¡ ¢ 	 £�²7³ zp� � ¡ ¢ � £�²7³ zFhhÌh:zp� É ¡ ¢ É £W²y³ (3)

» ��>zp�9Å ¡ ¢2£ ²7³ (4)»��ªj?�9Å ¡ ¢2£�²7³ h (5)

On the other hand, since it takes Å error-less steps to assembly Í � , we have

Pr r7¼ � w>~�r�r��BjA��w 	 w É »��ªjA�nÅ���g (6)

where � is pad mismatch rate. Comparing equations 5 and 6, we have �S~ ¡ ¢N£W²y³ .
Under the equilibrium conditions, Winfree further showed that the net growth rate

of the assembly is given by� � ~ �:� j � ¯ »�Î ¡�¢2£�¤ © »�Î ¡�¢ 	 £�² µ ~�ÎW� 	 g

where Î is a constant reflecting the small difference between ¦�§ª© and �n¦�´�µ . Now,
based on the above formula, a straightforward method to reduce the error rate � is to re-
duce the growth rate

� �
. However, since

� �
depends quadratically on � , a small decrease

in error rate may entail dramatic decrease in the growth rate.

3 Error-Resilient Assembly Using Two-Way Overlay Redundancy

Let � be the probability of a single pad mismatch between adjacent assembling DNA
tiles, and assume that the likelihood of a pad mismatch error is independent for distinct
pair of pads as long as they do not involve the binding of the same two tiles. As such, a
pad mismatch rate of �S~I�x� would imply an error-free assembly with an expected size
of only �nY tiles, which is disappointingly small. Thus, a key challenge in experimentally
demonstrating large scale algorithmic assemblies is to construct error-resilient tiles.
Winfree’s construction is an exciting step towards this goal [25]. However, to reduce
the error rate to ��	 (resp. ���), his construction replaces each tile with a group of �Ïb��{~� (resp. ebp�~ÑÐ) tiles and hence increases the size of the tiling assembly by a
factor of � (resp. Ð). Our construction described below, in contrast, reduces the tiling
error rate without scaling up the size of the final assembly. This would be an attractive
feature in the attempt to obtain assemblies with large computational capacity. We call
our constructions compact error resilient assemblies and describe them below in detail.

3.1 Construction

To achieve the goals stated above, we propose the following error resilient tiling scheme.
Our Error-Resilient Assembly I (using two-way overlay redundancy) uses only Ò com-
putational tile types plus � frame tile types. This drops the probability of assembly error
to ���	 , which is ��h �x� for �4~k��� , potentially allowing for error-free assemblies of
expected size in the hundreds of tiles.

The construction is depicted in Figure 3. Tiles in this construction are denoted as� � tiles (for version 1). Each pad of each tile encodes a pair of bits. The basic idea to
achieve error resiliency is to use two-way overlay redundancy: each tile

� � r<t�gvuRw com-
putes the outputs for its own position r<t�gvuRw and also for its right neighbor’s positionrVtEj���gyuRw ; the redundant computation results obtained by

� � r<t�gvuRw and its right neigh-
bor

� � rVtSj���gyuRw are compared via an additional error checking portion on
� � r<t�gvuRw ’s

right pad (which is the same as
� � rVt½j���gvuxw ’s left pad). Tile

� � r<t�gvuRw ’s right neighbor� � rVt�jT��gyuRw is not likely to bind to
� � rVt�gyuRw if these pad values are not consistent. Hence

if only one of
� � r<t�gyuRw and

� � r<tEjF��gyuRw is in error (incorrectly placed), the kinetics of
the assembly may allow the incorrectly placed tile to be ejected from the assembly.

The four pads of
� � rVt�gvuxw are constructed as follows (Figure 3).

– The right and left portions of the bottom pad represent the value of q�rVtNjÓ��gyuÔjÓ��w
and qsr<t�gvu¨jÕ��w respectively as communicated from the tile

� � rVt�gvu¨jÕ��w .
– The top portion of the right pad represents the value of |HrVt:j��@gvuRw as communicated

from the tile
� � r<t9js��gvuxw . The bottom portion of the right pad represents the value ofqsr<t_jC��gyuRw as determined by the tile

� � rVt�gyuRw . Note that the value q�rVt_jT��gvuxw is also

ÖÖÖ
ÖÖÖ
×××
××× Ø�Ø�Ø�ØØ�Ø�Ø�ØÙ�Ù�Ù�ÙÙ�Ù�Ù�ÙÚÚÚ

ÚÚ
ÛÛÛ
ÛÛ

Ü�ÜÜ�ÜÜ�ÜÜ�ÜÜ�ÜÜ�Ü
Ý�ÝÝ�ÝÝ�ÝÝ�ÝÝ�ÝÝ�Ý

Þ�Þ�Þ�Þß�ß�ß à�à�àà�à�àá�á�áá�á�á
â�â�â�ââ�â�â�âã�ã�ã�ãã�ã�ã�ã ä�ää�ää�ää�ää�äå�åå�åå�åå�åå�å

æ�æ�æ�æ�ææ�æ�æ�æ�ææ�æ�æ�æ�ææ�æ�æ�æ�ææ�æ�æ�æ�ææ�æ�æ�æ�ææ�æ�æ�æ�ææ�æ�æ�æ�æ
ç�ç�ç�çç�ç�ç�çç�ç�ç�çç�ç�ç�çç�ç�ç�çç�ç�ç�çç�ç�ç�çç�ç�ç�ç

è�è�è�èè�è�è�èè�è�è�èè�è�è�èè�è�è�èè�è�è�èè�è�è�èè�è�è�è
é�é�é�éé�é�é�éé�é�é�éé�é�é�éé�é�é�éé�é�é�éé�é�é�éé�é�é�é

ê�ê�ê�ê�êê�ê�ê�ê�êê�ê�ê�ê�êê�ê�ê�ê�êê�ê�ê�ê�êê�ê�ê�ê�êê�ê�ê�ê�êê�ê�ê�ê�ê
ë�ë�ë�ëë�ë�ë�ëë�ë�ë�ëë�ë�ë�ëë�ë�ë�ëë�ë�ë�ëë�ë�ë�ëë�ë�ë�ë

ì�ì�ì�ì�ìì�ì�ì�ì�ìì�ì�ì�ì�ìì�ì�ì�ì�ìì�ì�ì�ì�ìì�ì�ì�ì�ìì�ì�ì�ì�ìì�ì�ì�ì�ì
í�í�í�íí�í�í�íí�í�í�íí�í�í�íí�í�í�íí�í�í�íí�í�í�íí�í�í�í

î�î�î�î�îî�î�î�î�îî�î�î�î�îî�î�î�î�îî�î�î�î�îî�î�î�î�îî�î�î�î�î
ï�ï�ï�ïï�ï�ï�ïï�ï�ï�ïï�ï�ï�ïï�ï�ï�ïï�ï�ï�ïï�ï�ï�ï
ð�ð�ð�ðð�ð�ð�ðð�ð�ð�ðð�ð�ð�ðð�ð�ð�ðð�ð�ð�ðð�ð�ð�ð
ñ�ñ�ñ�ññ�ñ�ñ�ññ�ñ�ñ�ññ�ñ�ñ�ññ�ñ�ñ�ññ�ñ�ñ�ññ�ñ�ñ�ñV(i−1,j)

V(i−1,j−1)V(i,j−1)

V(i,j)

U(i−1,j) U(i−2,j)

V(i,j) V(i−1,j)

ò Q�óÌôRõ�ö�÷ùø�ú

ò Q�óôy÷ÌøEõsöiú

ò Q�óÌô�û¶ö�÷ùø�ú

ò Q óÌôy÷ùø�ûüöiú

ò Q óôy÷Ìø�ú

V(i,j+1)

V(i-1,j)V(i,j)

V(i,j-1)

V(i+1,j)

Fig. 3. Construction of compact error-resilient assembly version I. Each pad has two portions.
A portion encoding an input (resp. output) value is indicated with a dark blue (resp. light pink)
colored arrow head. The error checking portion is depicted as a checked rectangle. Tile

+ Q .0/;5<698
takes inputs D .0/�1Aý95<698 , G .0/�1Ë3L5<6{1?3
8 , and G .0/;576Ï1Ë3�8 ; determines G .0/�1?3�57698BJ D .0/�1ý957698>M
ORQ G .0/�1p3�576�1p3
8 , D .0/�1�3L5<698�J D .0/�1Óý957698>M
O � G .0/�1p3�576�1p3
8 , and G .0/;57698�JD .0/�1C3L57698NMPO@Q G .0/;5<6ª1C3�8 ; displays G .0/;5<698

redundantly determined by
� � r<tSj���gyuRw and hence this bottom portion performs

comparison of the two values and is referred to as error checking portion, and
labeled with checked background in Figure 3.

– The top and bottom portions of the left pad represent the values of |Hr<t�jÕ��gyuRw andqsr<t�gvuRw respectively, as determined by the tile
� � rVt�gvuxw . Again, the bottom portion is

the error checking portion.
– The right and left portions of the top pad represent the values of q�rVtEj���gvuxw andqsr<t�gvuRw respectively, as determined by tile

� � rVt�gvuxw .
The above tile design allows the values q�r<tþjÿ��gyuKj���w and qsrVt�gvu jÿ�:w to be

communicated to tile
� � r<t�gvuRw from the tile

� � rVt�gyu�jF�:w just below
� � rVt�gvuxw . The value|HrVt�jA�@gvuxw is communicated to tile

� � r<t�gvuRw from its immediate right neighbour
� � r<t�j��gyuRw . These three values, q�rVt�jÕ��gyu�jÕ�:w , q�rVt�gyu�j���w , and |Hr<tWjÓ�@gvuRw , can be viewed

as input bits to tile
� � rVt�gyuRw , and the other portions of the pads as outputs. The valuesqsrVt½jF��gvuxw and |HrVt½jF��gvuxw are determined by tile

� � r<t�gyuRw from q�rVtEj���gvu�jI��w and|HrVt�jÓ�@gvuxw : qsr<t�jÕ��gyuRwª~�|Hr<t�jÓ�_gyuRw ^�� � q�rVt�j���gyu�j���w and |HrVt�j���gvuRw�~�|HrVt�j�@gyuRw ^�� 	 qsr<t�j���gvu-j���w . The value q�rVt�gyuRw is determined from qsrVt�gvu-j���w and |Hr<t�j���gvuRw :qsrVt�gvuxwS~�|Hr<tWj���gvuRw ^�� � qsrVt�gvu�j���w . The determined value qsrVt�gvuxw�~ � is displayed
by the tile

� � r<t�gyuRw .
In this construction, each pad encodes two bits. However, since the values of the left

pad, the top pad, and the bottom portion (q�rVt�jT��gyuRw) of the right pad each depend only

on the values of the top portion (|Hr<tWjÓ�@gvuRw) of the right pad and the bottom pads, the
tile type depends on only input binary bits, namely, q�rVtWjË��gvu¨jp��w , q�rVt�gyu�jË�:w , and|HrVt�jÓ�@gyuRw . Hence only � � ~lÒ tile types are required. In addition, � tiles are required
to assemble the frame, as described in Sect. 5.

We emphasize that though a pad has two portions, it should be treated as a whole
unit. A value change in one portion of a pad changes the pad to a completely new pad.
If the pad is implemented as a single strand DNA, this means that the sequence of the
single strand DNA will be a complete new sequence. One potential confusion to be
avoided is mistakenly considering two pads encoding, say Y�Y and Y_� , as having the Y
portions identical or, in the context of single strand DNA, as having half of the DNA
sequences identical. To emphasize the unity of a pad, we put a box around each pad in
Figure 3.

3.2 Error Analysis

Recall that � is the probability of a single pad mismatch between two adjacent DNA
tiles. We further assume that the likelihood of a pad mismatch error is independent for
distinct pads as long as they do not involve the binding of the same two tiles and that^n� � is the function

]_^�`
.

Our intention is that the individual tiling assembly error rate (and hence the prop-
agation of these errors to further tile assemblies) is substantially decreased, due to co-
operative assembly of neighboring tiles, which redundantly compute the qsr�j¨gPjþw and|HrUj¨gLjþw values at their positions and at their right neighbours.

Without loss of generality, we consider only the cases where the pad binding error
occurs on either the bottom pad or the right pad of a tile

� � rVt�gvuxw . Otherwise, if the
pad binding error occurs on the left (resp. top) pad of tile

� � rVt�gvuxw , then use the same
below argument for tile

� � rVtWzl��gyuRw (resp.
� � r<t�gyu�zl�:w). We define the neighborhood

of tile
� � rVt�gvuxw to be the set of Ò distinct tiles

f � � rVt � gvu � w�� � t � j�t ��� �_g � u � j?u ����¨m�� f � � r<t�gyuRwÄm with coordinates that differ from r<t�gvuRw by at most � . A neighborhood
tile

� � r<t � gyu � w is dependent on
� � r<t�gyuRw if both its coordinates are equal to or greater

than those of
� � rVt�gyuRw ; otherwise

� � rVt � gvu � w is independent of
� � rVt�gyuRw . Note that a neigh-

borhood tile
� � r<t � gyu � w is dependent on

� � r<t�gvuRw if and only if the values qsr<t � gvu � w and|HrVt � gyu � w are determined at least partially from qsr<t�gvuRw or |Hr<t�gvuRw . More specifically,
the neighborhood tiles dependent on

� � rVt�gvuxw are
� � rVtEz���gvu�zÿ�:w , � � r<tÄzÿ��gvuRw , and� � rVt�gyuüz ��w . The neighborhood tiles independent of

� � r<t�gvuRw are
� � r<tªz ��gyu j ��w ,� � rVt�gyu�jp�:w , � � rVt�jÕ��gvuÔzF��w , � � rVt�jÕ��gyuRw , and

� � rVt�jÕ��gyu¨jp�:w .
Lemma 1. Suppose that the neighborhood tiles independent of tile

� � rVt�gyuRw have cor-
rectly computed qsr�j¨gPjþw and |Hr�j¨gPjþw . If there is a single pad mismatch between tile� � rVt�gyuRw and another tile just below

� � r<t�gyuRw or to its immediate right, then there is at
least one further pad mismatch in the neighborhood of tile

� � r<t�gvuRw . Furthermore, given
the location of the initial mismatch, the location of the further pad mismatch can be
determined among at most three possible pad locations.

Proof. Suppose that a pad binding error occurs on the bottom pad or the right pad of tile� � rVt�gyuRw but no further pad mismatch occurs between two neighborhood tiles which are
independent of

� � rVt�gvuxw . We now consider a case analysis of possible pad mismatches.

	
		
		
		
		
	
�
��
��
��
��
�

�
�
��
�
�

�
�
�
��
�
�
��
��
��
��
��
�
�
��
��
��
��
�

�
��
��
��
��
��
�
����
��

�
�
�
��
�
�

�
�
�
��
�
�
����
�
����
�

�
��
��
��
��
�
�
��
��
��
��
�

����
��
����
���
�
�
��
�
�
��
�
�
��
�
�
�

 !
!
!

"
"
"
"
""
"
"
"
""
"
"
"
""
"
"
"
""
"
"
"
""
"
"
"
""
"
"
"
"
#
#
#
##
#
#
##
#
#
##
#
#
##
#
#
##
#
#
##
#
#
#

$
$
$
$$
$
$
$$
$
$
$$
$
$
$$
$
$
$$
$
$
$$
$
$
$
%
%
%
%%
%
%
%%
%
%
%%
%
%
%%
%
%
%%
%
%
%%
%
%
%

&
&
&
&
&&
&
&
&
&&
&
&
&
&&
&
&
&
&&
&
&
&
&&
&
&
&
&&
&
&
&
&&
&
&
&
&
'
'
'
'
''
'
'
'
''
'
'
'
''
'
'
'
''
'
'
'
''
'
'
'
''
'
'
'
''
'
'
'
'

(
(
(
((
(
(
((
(
(
((
(
(
((
(
(
((
(
(
((
(
(
((
(
(
(
)
)
)
))
)
)
))
)
)
))
)
)
))
)
)
))
)
)
))
)
)
))
)
)
)

*
*
*
*
**
*
*
*
**
*
*
*
**
*
*
*
**
*
*
*
**
*
*
*
**
*
*
*
*
+
+
+
++
+
+
++
+
+
++
+
+
++
+
+
++
+
+
++
+
+
+

,
,
,
,
,,
,
,
,
,,
,
,
,
,,
,
,
,
,,
,
,
,
,,
,
,
,
,,
,
,
,
,
-
-
-
-
--
-
-
-
--
-
-
-
--
-
-
-
--
-
-
-
--
-
-
-
--
-
-
-
-

V(i−1,j−1)

V(i−1,j)

Further Mismatch

V(i,j)

Mismatch

V(i,j−1) V(i−1,j−1) V(i−2,j−1)V(i−1,j−1)

U(i−2,j−1)

U(i−1,j) U(i−2,j)

V(i,j) V(i−1,j)

.0/21436587:9.0/2143<; / 587:9

.0/21=38587?> / 9
V(i+1,j)

V(i,j-1)

V(i,j)

V(i,j+1)

V(i-1,j)

V(i-1,j-1)

. / 1=3@> / 567A> / 9

.0/21=3@> / 567:9

.0/21436587B; / 9

Fig. 4. Case 1.1 in the proof of Lemma 1: error in right portion G .0/�1¶3L5y6E1�3
8 of the bottom pad
of tile

+ Q .0/;5<698
causes a further mismatch on the right pad of tile

+ Q .0/;5<698
(1) First consider the case where the pad binding error occurs on the bottom pad of

tile
� � r<t�gyuRw . Recall that the right and left portions of the bottom pad represent the values

of q�rVtNjA��gyuÔjA��w and q�rVt�gyuÔjA��w respectively as communicated from tile
� � rVt�gyuÔjA��w .

Observe that neighborhood tiles
� � rVt�gvu�jÕ��w , � � r<tWj���gvu�jÕ��w , and

� � rVt�j���gyuRw are all
independent of

� � rVt�gvuxw and so all correctly compute qsrUj¨gLjþw and |Hr�j¨gPjþw according
to the assumption of the lemma.

(1.1) Consider the case where the pad binding error is due to the incorrect value of
the right portion q�rVt2je��gyuþjA��w of the bottom pad of tile

� � rVt�gvuxw as shown in Figure 4.
Note that the left portion qsrVt�gvu�j��:w of the bottom pad of tile

� � rVt�gyuRw may also be
incorrect. In case (i),

� � rVt�gyuRw has an incorrect value for the |Hr<tEjp�@gvuRw portion of its
right pad and hence there is a further pad mismatch on the right pad of

� � r<t�gyuRw . In case
(ii),

� � rVt�gyuRw has a correct value for the |�rVtnjH�@gyuRw portion of its right pad. Since
� � r<t�gvuRw

uses the formula q�rVt}j?��gvuRwE~I|Hr<t2je�@gyuRw ^�� � q�rVtNj?��gvuþj?�:w to compute qsr<t2j?��gyuRw
and

^�� � is assumed to be the
]-^�`

function, it will determine an incorrect value forqsrVt½jF��gvuxw , which is distinct from the correct value of qsrVt½jF��gvuxw determined by its
(independent) right neighbor tile

� � rVt9js��gyuRw . This again implies a further pad mismatch
on the right pad of tile

� � rVt�gvuxw .
(1.2) Next consider the case in Figure 5 where the pad binding error is due to the

wrong value of the left portion qsr<t�gyu¨j��:w of the bottom pad of tile
� � rVt�gyuRw . However,

there is a correct match in the right portion qsr<tEjF��gyu�jI�:w of the bottom pad of tile� � rVt�gyuRw . In case (i),
� � r<t�gyuRw has an incorrect value for the top portion |HrVtEj��@gvuRw of

its right pad, then there will be a mismatch on the right pad of
� � rVt�gvuxw . In case (ii),� � rVt�gyuRw has a correct value for the top portion |Hr<tBjl�_gyuRw of its right pad, then it

will further determine a correct value for |HrVtªj���gyuRw , since |�rVtªjÿ��gyuRwC~ |Hr<tªj

CCCC
C
DDDD
D

E
EE
EE
EE
EE
EE
E
F
FF
FF
FF
FF
FF
F

G
G
G
GH
H
H
HI
I
I
II
I
I
IJ
J
J
JJ
J
J
J

KKKK
K
LLLL
L

M
MM
MM
MM
MM
M
NNNN
N

O
O
O
OO
O
O
OP
P
P
PP
P
P
P

QQQQ
Q
RRRR
R

S
S
ST
T
TU
U
U
UV
V
V
W
WW
WW
WW
WW
W
X
XX
XX
XX
XX
X Y
Y
Y
YY
Y
Y
YZ
Z
Z
ZZ
Z
Z
Z

[
[
[
[
[[
[
[
[
[[
[
[
[
[[
[
[
[
[[
[
[
[
[[
[
[
[
[[
[
[
[
[
\
\
\
\\
\
\
\\
\
\
\\
\
\
\\
\
\
\\
\
\
\\
\
\
\

]
]
]
]]
]
]
]]
]
]
]]
]
]
]]
]
]
]]
]
]
]]
]
]
]
^
^
^
^^
^
^
^^
^
^
^^
^
^
^^
^
^
^^
^
^
^^
^
^
^

_
_
_
__
_
_
__
_
_
__
_
_
__
_
_
__
_
_
__
_
_
__
_
_
_
`
`
`
``
`
`
``
`
`
``
`
`
``
`
`
``
`
`
``
`
`
``
`
`
`

a
a
a
aa
a
a
aa
a
a
aa
a
a
aa
a
a
aa
a
a
aa
a
a
a
b
b
b
bb
b
b
bb
b
b
bb
b
b
bb
b
b
bb
b
b
bb
b
b
b

c
c
c
c
cc
c
c
c
cc
c
c
c
cc
c
c
c
cc
c
c
c
cc
c
c
c
cc
c
c
c
c
d
d
d
d
dd
d
d
d
dd
d
d
d
dd
d
d
d
dd
d
d
d
dd
d
d
d
dd
d
d
d
d

e
e
e
e
ee
e
e
e
ee
e
e
e
ee
e
e
e
ee
e
e
e
ee
e
e
e
ee
e
e
e
e
f
f
f
ff
f
f
ff
f
f
ff
f
f
ff
f
f
ff
f
f
ff
f
f
fV(i,j)

V(i,j−1)
V(i−1,j−1)

Case ii b

V(i−1,j)
Case i

Further Mismatch
Mismatch

Further Left Pad Mismatch
Case iia

V(i,j−1)
V(i+1,j−1)

V(i,j−1)

Further Mismatch

U(i−2,j)U(i−1,j)

V(i−1,j)V(i,j)

U(i−1,j−1)

V(i+1,j)

V(i,j-1)

V(i,j)

V(i,j+1)

V(i-1,j)

V(i+1,j-1)

.0/2143g> / 567:9

.0/21436587h; / 9

.0/21436587:9.0/21=3i; / 587j9

.0/21=3i; / 567A> / 9 .0/21=38567A> / 9

Fig. 5. Case 1.2 in the proof of Lemma 1: a further mismatch is caused by an error in the G .0/;5<6W13�8
portion of the bottom pad of tile

+�Q�.0/U5V698
�@gyuRw ^n� 	 q�rVt�jË��gyuÏjË��w and both |�rVt}je�_gyuRw and q�rVt}jÓ��gyuÏjÓ�:w have correct values.
Since qsr<t�gyuRwª~ÿ|Hr<t�j���gyuRw ^�� � qsrVt�gvu�j��:w , |HrVt�j���gyuRw is correct and qsr<t�gyu�j���w is
incorrect,

� � rVt�gvuxw will determine an incorrect value for q�rVt�gvuxw .
Note that the neighborhood tiles

� � r<t9js��gvuWjs��w , � � rVt�gvu�j���w , and
� � r<tLzü��gvuWjs��w are

independent of
� � r<t�gvuRw and so both correctly compute qsrUj¨gLjþw and |Hr�j¨gPjþw . However,� � rVt�gyuRw ’s immediate left neighbour

� � r<tLzü��gvuxw is dependent both on the incorrect value
communicated by the pad of

� � r<t�gyuRw and the correct values communicated by the pad
of
� � rVtPz¶��gyuWj���w . So in case (ii) there must be a further pad mismatch at tile

� � rVtPz¶��gvuRw
as argued below. In case (iia) there is pad mismatch on the right pad of

� � r<t�z���gvuRw either
due to a mismatch on the portion of |HrVt2jA��gyuRw or on the portion of qsr<t�gvuRw . Otherwise,
in case (iib) there is no mismatch on either the |HrVtWjp��gyuRw or the qsr<t�gyuRw portion of the
pad between

� � rVt�gyuRw and
� � r<txzA��gyuRw . This implies that qsr<t�gvuRw is incorrectly computed

by
� � r<t2zÕ��gyuRw (since

� � rVt�gvuxw has incorrectly computed q�rVt�gyuRw), but
� � rVt2zÕ��gyuRw has a

correct value of |Hr<t�jK��gyuRw . However, q�r<t�gyuRw½~I|�rVtxjü��gyuRw ^�� � qsr<t�gvuEjK�:w and
^n� � is]_^�`

, this implies that the right portion q�rVt�gyu�j¨�:w of the bottom pad of
� � rVt�z���gvuxw has an

incorrect value, and hence there is a mismatch between
� � r<t:z4��gvuxw and

� � rVt:z4��gvu�jü��w .
(2) Next consider the case where the pad binding error occurs on the right pad of tile� � rVt�gyuRw , but there is no error on the bottom pad of

� � r<t�gvuRw . We first note that the value
of the top portion |Hr<tWj?�@gvuRw of the right pad of

� � rVt�gyuRw must have an incorrect value.
Assume the opposite case where |HrVt�jA�@gvuxw is correct. But the qsr<t�jË��gyu{jp��w portion
of
� � r<t�gyuRw ’s bottom pad must also have a correct value (no mismatch on the bottom

pad), this results in a further correct value for the q�rVtWjp��gyuRw portion of
� � rVt�gyuRw ’s right

pad. Thus both |HrVt�jË�_gyuRw and q�rVt�j���gvuxw portions of
� � rVt�gyuRw ’s right pad are correct

k
kk
kk
kk
kk
k
llll
lm
m
m
mn
n
n
n

o
o
o
oo
o
o
op
p
p
pp
p
p
p

q
q
qr
r
r

s
s
st
t
tu
u
u
uu
u
u
uv
v
v
vv
v
v
v wwww
ww
xxxx
xx

y
yy
yy
yy
yy
y
z
zz
zz
zz
zz
z

{
{{
{{
{{
{{
{{
{
|
||
||
||
||
||
|

}
}
}
}}
}
}
}~
~
~
~~
~
~
~ ����
�����
�

�
��
��
��
��
�
����
� �
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
�

�
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
�

�
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
�
�
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
�
�
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
�
�
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
�

�
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
�
�
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
�

�
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
�
�
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
�

�
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
�

�
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
�

Case i

Further Mismatch
Case ii

Further Mismatch

Mismatch

V(i,j) V(i−1,j)

V(i−1,j−1)V(i,j−1)

V(i−1,j) V(i−2,j)

V(i−1,j+1)

V(i−1,j)V(i,j)

U(i−2,j)U(i−1,j)

U(i−2,j+1)

V(i+1,j)

V(i,j-1)

V(i,j)

V(i,j+1) V(i-1,j+1)

V(i-1,j)

. / 1=36587j9 . / 1=3@> / 587:9

.0/2143g> / 567B; / 9. / 1=36587�; / 9

. / 1=3i; / 567:9

. / 1=36587�> / 9
Fig. 6. Case 2.1 in the proof of Lemma 1: a further mismatch is caused by an error in the D .0/21ý957698

portion of the right pad of tile
+}Q�.0/;5<698

and there must be no mismatch on the right pad. A contradiction. Therefore, |Hr<txj��_gyuRw
must have an incorrect value, and hence we only need to consider this case.

(2.1) Now consider the case where the pad binding error is due to the incorrect value
of the top portion |HrVt�jÓ�@gyuRw of the right pad of tile

� � rVt�gyuRw as shown in Figure 6. We
note that

� � rVt�gvuxw will compute an incorrect value for the right portion qsrVt2je��gyuRw of its
top pad, according to the formula q�rVt�jÕ��gvuRw�~l|Hr<t�je�_gyuRw ^n� � q�rVtWjË��gvu¨jp��w . Note
that

� � r<t�gyuÄzT��w is dependent on
� � r<t�gyuRw . In case (i), tile

� � r<t�gyuÄzT��w has a correct value
of q�rVt�jÕ��gvuRw . There must be a pad mismatch on qsrVtWjË��gyuRw between

� � rVt�gyuÔz��:w and� � rVt�gyuRw , since the value of qsr<tWj���gvuRw determined by
� � rVt�gyuRw is incorrect. In case (ii),

tile
� � rVt�gvu�zË��w has an incorrect value of qsr<t�jA��gyuRw , using similar argument as in case

1.1, we can show that there must be a pad mismatch on the |HrVt�jË�@gvuÏz��:w portion of� � rVt�gyuÏz��:w ’s right pad.

Hence we conclude that in each case, there is a further pad mismatch between a pair
of adjacent tiles in the neighborhood of tile

� � rVt�gyuRw . Furthermore, we have shown in
each case that given the location of the initial mismatch, the location of the further pad
mismatch can be determined among at most three possible pad locations.

Using the analytical methodology described in Sect. 2.2, we next calculate the error
rate � � in our two-way overlay construction. The key observation here is that the number
of assemblies with one mismatch is � � ~�Y . In addition, since one pad mismatch is
linked with one of three possible further mismatches, we have � 	 ~��9Å����~��nÅ . This

gives us

Pr r7¼ � wE~ ��>zp� � ¡ ¢N£W²y³ zË� 	 ¡ ¢ 	 £�²7³ zp� � ¡ ¢ � £�²7³ zFhhÌh:zp� É ¡ ¢ É £W²y³ (7)

» ��>zp� 	 ¡ ¢ 	 £�²7³ (8)

~ ��>z��nÅ ¡ ¢ 	 £W²y³ (9)»��ªj��nÅ ¡ ¢ 	 £ ²y³ g (10)

where ¼ � is the unique error-less assembly.
Again, we also have

Pr r<¼ � wE~ÿr�rU�þje� � w 	 w É »��ªjA�nÅ�� � h (11)

Putting together equations 10 and 11, we have � � ~� ¡ ¢ 	 £W²y³ ~l���	 . Thus we have
shown,

Theorem 1. The error rate � � for assemblies constructed from version 1 error resilient
tiles is ���	 , where � is the error rate for the corresponding assembly system with no
error correction.

Note that the growth rate
� � »FÎ ¡ ¢N£�¤�¥ »�Î ¡ ¢ 	 £W²y³ ~�� � � � . Hence the growth rate

depends linearly on the error rate. Recall that, in contrast, in the system with no error
correction, the growth rate

� � »FÎ���	 . As such, compared with the system with no error
correction, decreasing error rate in our version 1 error resilient system results in a much
less decrease in the speed of assembly.

4 Error-Resilient Assembly Using Three-way Overlay
Redundancy

4.1 Construction

We next extend the design of our scheme to a 3-way overlay scheme. The Error-Resilient
Assembly version 2 (using 3-way overlay redundancy) uses 16 computational tile types
and 5 frame tile types. One mismatch on a tile forces two more mismatches in its neigh-
borhood. This property further lowers the assembly error.

The basic construction is shown in Figure 7. In this construction, each pad encodes a
tuple of bits and hence is an Ò -valued pad. The basic idea of this error-resilient assem-
bly is to have each tile

� 	 rVt�gvuxw compute error checking values for positions rVt�j���gvuxw ,rVt�gyu½jK��w , r<t9zC��gvuRw , and rVt�gyu�zC��w , which are compared with corresponding error check-
ing values computed by

� 	 r<t�gyuRw ’s four neighbors. Again, the neighbors are unlikely
to bind with

� 	 rVt�gvuxw if such error checking values are inconsistent, and the kinetics
of the assembly will allow these tiles to dissociate from each other, as in version 1
(2-way overlay redundancy). However, instead of introducing just one additional mis-
match in

� 	 rVt�gvuxw ’s neighborhood, the 3-way overlay redundancy (version 2) forces two
mismatches, and hence we have a further lowered error rate.

��
��
��
��

�
��
��
��
�
�
��
��
��
�

��
�

¡
¡
¡¡
¡
¡¢
¢
¢¢
¢
¢
£
£
£¤
¤
¤¥
¥
¥
¥¥
¥
¥
¥¦
¦
¦
¦¦
¦
¦
¦

§
§
§
§§
§
§
§¨
¨
¨
¨¨
¨
¨
¨©
©
©
©©
©
©
©ª
ª
ª
ªª
ª
ª
ª «
«
««
«
«
¬
¬
¬¬
¬
¬

®®
®®

¯
¯¯
¯¯
¯
°
°°
°°
°

±
±±
±±
±±
±
²
²²
²²
²²
²³
³
³
³³
³
³
³³
³
³
³³
³
³
³³
³
³
³³
³
³
³³
³
³
³³
³
³
³

´
´
´
´´
´
´
´´
´
´
´´
´
´
´´
´
´
´´
´
´
´´
´
´
´´
´
´
´

µ
µ
µ
µ
µµ
µ
µ
µ
µµ
µ
µ
µ
µµ
µ
µ
µ
µµ
µ
µ
µ
µµ
µ
µ
µ
µµ
µ
µ
µ
µµ
µ
µ
µ
µ
¶
¶
¶
¶¶
¶
¶
¶¶
¶
¶
¶¶
¶
¶
¶¶
¶
¶
¶¶
¶
¶
¶¶
¶
¶
¶¶
¶
¶
¶

·
·
·
·
··
·
·
·
··
·
·
·
··
·
·
·
··
·
·
·
··
·
·
·
··
·
·
·
··
·
·
·
·
¸
¸
¸
¸¸
¸
¸
¸¸
¸
¸
¸¸
¸
¸
¸¸
¸
¸
¸¸
¸
¸
¸¸
¸
¸
¸¸
¸
¸
¸

¹
¹
¹
¹
¹¹
¹
¹
¹
¹¹
¹
¹
¹
¹¹
¹
¹
¹
¹¹
¹
¹
¹
¹¹
¹
¹
¹
¹¹
¹
¹
¹
¹
º
º
º
ºº
º
º
ºº
º
º
ºº
º
º
ºº
º
º
ºº
º
º
ºº
º
º
º

»
»
»
»
»»
»
»
»
»»
»
»
»
»»
»
»
»
»»
»
»
»
»»
»
»
»
»»
»
»
»
»»
»
»
»
»
¼
¼
¼
¼¼
¼
¼
¼¼
¼
¼
¼¼
¼
¼
¼¼
¼
¼
¼¼
¼
¼
¼¼
¼
¼
¼¼
¼
¼
¼

½
½
½
½½
½
½
½½
½
½
½½
½
½
½½
½
½
½½
½
½
½½
½
½
½
¾
¾
¾
¾¾
¾
¾
¾¾
¾
¾
¾¾
¾
¾
¾¾
¾
¾
¾¾
¾
¾
¾¾
¾
¾
¾

U(i−1,j)

V(i+1,j)

V(i,j-1)

V(i,j)

V(i,j+1)

V(i-1,j)

ò � óôy÷ùø�ûüöiú

ò � óô�ûüö�÷Ìø�ú ò � óÌô7÷ùøLú ò � óôRõsö�÷Ìø�ú

ò � óôy÷ùøEõsöiú

V(i,j-1) V(i-1,j)

V(i-1,j-1)

V(i-1,j-2)

U(i-1,j-1)

V(i,j-1) V(i-1,j-1)
U(i-2,j)

U(i-2,j-1)

V(i,j-2) V(i-1,j-1)

Fig. 7. Tile
+ � takes inputs D .0/Ä1?ýn57698 , D .0/�1Ëýn5<6�1Õ3
8 , G .0/�1Õ3�576�1ËýL8 and G .0/;576�1ËýL8 ;

determines G .0/E1�3�5<6�1F3
8�J D .0/E1pýn5V6H1�3�8ªMPO@Q G .0/Ä1�3L576H1pýL8 , D .0/E1�3�576�1�3
8�JD .0/L1�ýn5y6�1�3
8-MPO � G .0/�1�3L576�1�ýL8 , G .0/;5<6�1�3
8�J D .0/L1�3�5y6�1�3
8_MPO Q G .0/U5V6�1�ýL8 , D .0/L1�3�57698�JD .0/�1eýn5<698ÄMPO � G .0/�1Ó3�576Ï1Ó3
8 , G .0/;57698þJ D .0/�1Ó3�5<698ÄMPO Q G .0/;5<6{1Ó3
8 and G .0/W1?3�57698þJD .0/�1Ký957698NMPO@Q G .0/-1T3L5<6B1C3
8 ; displays G .0/;5<698
4.2 Error Analysis

For error analysis, in addition to the assumptions made in Sect. 3.2, we require that^n� 	 can detect incorrect value of input � regardless of the correctness of input � . This
property seems essential to guarantee two further mismatches in a tile’s neighborhood
when there is an initial mismatch on one of the tile’s four pads. One example instance
of
^n� 	 is given in Table 4.2.

Table 1. An instance of
M
O � . This binary operation can detect the incorrect value of input

3
,

regardless of the correctness of input
ý

Input 1 Input 2 Output¿ ¿ ¿3 ¿ 3¿ 3 ¿3 3 3

The middle portions of all the four pads (top, right, left, bottom) are computed as
described in the caption of Figure 7 and serve as the part to redundantly compute and
compare the outputs of two neighboring tiles as shown in the figure.

Without loss of generality, we again consider only the cases where the pad binding
error occurs on either the bottom pad or right pad of a tile

� 	 rVt�gyuRw . Otherwise, if the pad
binding error occurs on the left pad of tile

� 	 rVt�gyuRw , then use the same below argument
for tile

� 	 rVtSz ��gvuxw ; likewise if the pad binding error occurs on the top pad of tile� 	 rVt�gyuRw , use the same below argument for tile
� 	 rVt�gyuÏz��:w .

Lemma 2. Suppose that the neighborhood tiles independent of tile
� 	 rVt�gyuRw have cor-

rectly computed qsr�j¨gPjþw and |Hr�j¨gPjþw . If there is a single pad mismatch between tile� 	 rVt�gyuRw and another tile just below or to its immediate right, then there are at least two
further pad mismatches between pairs of adjacent tiles in the immediate neighborhood
of tile

� 	 rVt�gvuxw . Furthermore, given the location of the initial mismatch, the location of
the second mismatch can be determined among at most three locations in the neigh-
borhood of

� 	 r<t�gyuRw ; given the location of the initial and the second mismatches, the
location of the third mismatch can be determined among at most five locations.

Proof. Suppose a pad binding error occurs on a bottom pad or right pad of tile
� 	 r<t�gvuRw

but no further pad mismatch occurs between two neighborhood tiles which are inde-
pendent of

� 	 r<t�gyuRw . We now consider a case analysis of possible pad mismatches.

ÀÀ
À
ÁÁ
Á
Â
ÂÂ
ÂÂ
Â
Ã
ÃÃ
ÃÃ
Ã

Ä
ÄÄ
ÄÄ
Ä
Å
ÅÅ
ÅÅ
Å
Æ
ÆÆ
ÆÆ
Æ
Ç
ÇÇ
ÇÇ
Ç

ÈÈ
È
ÉÉ
É

Ê
Ê
ÊË
Ë
ËÌ
Ì
ÌÍ
Í
ÍÎ
Î
Î
ÎÏ
Ï
Ï
ÏÐ
Ð
Ð
ÐÑ
Ñ
Ñ
Ñ
ÒÒ
Ò
ÓÓ
ÓÔ
Ô
Ô
ÔÕ
Õ
Õ
Õ Ö
Ö
Ö×
×
×

Ø
Ø
Ø
Ø
ØØ
Ø
Ø
Ø
ØØ
Ø
Ø
Ø
ØØ
Ø
Ø
Ø
ØØ
Ø
Ø
Ø
ØØ
Ø
Ø
Ø
ØØ
Ø
Ø
Ø
ØØ
Ø
Ø
Ø
Ø
Ù
Ù
Ù
ÙÙ
Ù
Ù
ÙÙ
Ù
Ù
ÙÙ
Ù
Ù
ÙÙ
Ù
Ù
ÙÙ
Ù
Ù
ÙÙ
Ù
Ù
ÙÙ
Ù
Ù
Ù

Ú
Ú
Ú
ÚÚ
Ú
Ú
ÚÚ
Ú
Ú
ÚÚ
Ú
Ú
ÚÚ
Ú
Ú
ÚÚ
Ú
Ú
ÚÚ
Ú
Ú
ÚÚ
Ú
Ú
Ú
Û
Û
Û
ÛÛ
Û
Û
ÛÛ
Û
Û
ÛÛ
Û
Û
ÛÛ
Û
Û
ÛÛ
Û
Û
ÛÛ
Û
Û
ÛÛ
Û
Û
Û

Ü
Ü
Ü
Ü
ÜÜ
Ü
Ü
Ü
ÜÜ
Ü
Ü
Ü
ÜÜ
Ü
Ü
Ü
ÜÜ
Ü
Ü
Ü
ÜÜ
Ü
Ü
Ü
ÜÜ
Ü
Ü
Ü
ÜÜ
Ü
Ü
Ü
Ü
Ý
Ý
Ý
ÝÝ
Ý
Ý
ÝÝ
Ý
Ý
ÝÝ
Ý
Ý
ÝÝ
Ý
Ý
ÝÝ
Ý
Ý
ÝÝ
Ý
Ý
ÝÝ
Ý
Ý
Ý

Þ
Þ
Þ
Þ
ÞÞ
Þ
Þ
Þ
ÞÞ
Þ
Þ
Þ
ÞÞ
Þ
Þ
Þ
ÞÞ
Þ
Þ
Þ
ÞÞ
Þ
Þ
Þ
ÞÞ
Þ
Þ
Þ
ÞÞ
Þ
Þ
Þ
Þ
ß
ß
ß
ßß
ß
ß
ßß
ß
ß
ßß
ß
ß
ßß
ß
ß
ßß
ß
ß
ßß
ß
ß
ßß
ß
ß
ß

à
à
à
àà
à
à
àà
à
à
àà
à
à
àà
à
à
àà
à
à
àà
à
à
à
á
á
á
áá
á
á
áá
á
á
áá
á
á
áá
á
á
áá
á
á
áá
á
á
á

â
â
â
â
ââ
â
â
â
ââ
â
â
â
ââ
â
â
â
ââ
â
â
â
ââ
â
â
â
ââ
â
â
â
â
ã
ã
ã
ãã
ã
ã
ãã
ã
ã
ãã
ã
ã
ãã
ã
ã
ãã
ã
ã
ãã
ã
ã
ã

U(i−1,j)

V(i+1,j)

V(i,j-1)

V(i,j)

V(i,j+1)

V(i-1,j)

ò � óô�ûüö�÷Ìø�ú ò � óÌô7÷ùøLú ò � óôRõsö�÷Ìø�ú

ò � óôy÷ùøEõsöiú

V(i,j-1) V(i-1,j)

V(i-1,j-1)

V(i-1,j-2) Mismatch

V(i-1,j-1)

U(i-1,j-1)

V(i,j-1) V(i-1,j-1)
U(i-2,j)

U(i-2,j-1)

V(i,j-2)

2nd mismatch

Case 1.1.a

ò � óôy÷ùø�ûüöiú
3rd mismatch

Fig. 8. Case 1.1.a in the proof of Lemma 2

(1) First consider the case where the pad binding error occurs on the qsrVt-jC��gvu�jü��w
portion of the bottom pad of tile

� 	 rVt�gvuxw .
(1.1) Consider the case where the pad binding error is due to the incorrect value of

the right portion qsr<t_jC��gyu½jü��w of the bottom pad of tile
� 	 r<t�gvuRw (there may also be the

incorrect value of the other portions of the bottom pad of tile
� 	 rVt�gvuxw). Further consider

case (1.1a) (Figure 8) when there is no mismatch on the bottom portion |HrVt2j4�@gvuªjA��w

ää
ää
åå
åå
æ
ææ
ææ
ææ
æ
ç
çç
çç
çç
ç

è
èè
èè
è
é
éé
éé
é
ê
êê
êê
êê
ê
ë
ëë
ëë
ëë
ë

ìì
ìì
íí
íí î
î
îî
î
îï
ï
ïï
ï
ï

ð
ð
ðñ
ñ
ñò
ò
ò
òò
ò
ò
òó
ó
ó
óó
ó
ó
ó
ô
ô
ô
ôô
ô
ô
ôõ
õ
õ
õõ
õ
õ
õ

öö
ö
÷÷
÷ø
ø
ø
øø
ø
ø
øù
ù
ù
ùù
ù
ù
ù ú
ú
úú
ú
ú

û
û
ûû
û
û
ü
ü
ü
ü
üü
ü
ü
ü
üü
ü
ü
ü
üü
ü
ü
ü
üü
ü
ü
ü
üü
ü
ü
ü
üü
ü
ü
ü
üü
ü
ü
ü
ü

ý
ý
ý
ýý
ý
ý
ýý
ý
ý
ýý
ý
ý
ýý
ý
ý
ýý
ý
ý
ýý
ý
ý
ýý
ý
ý
ý
þ
þ
þ
þþ
þ
þ
þþ
þ
þ
þþ
þ
þ
þþ
þ
þ
þþ
þ
þ
þþ
þ
þ
þþ
þ
þ
þ
ÿ
ÿ
ÿ
ÿÿ
ÿ
ÿ
ÿÿ
ÿ
ÿ
ÿÿ
ÿ
ÿ
ÿÿ
ÿ
ÿ
ÿÿ
ÿ
ÿ
ÿÿ
ÿ
ÿ
ÿÿ
ÿ
ÿ
ÿ

��
��

��
��

���
���

���
���

U(i−1,j)

V(i+1,j)

V(i,j-1)

V(i,j)

V(i,j+1)

V(i-1,j)

ò � óô�ûüö�÷Ìø�ú ò � óÌô7÷ùøLú ò � óôRõsö�÷Ìø�ú

ò � óôy÷ùøEõsöiú

V(i,j-1) V(i-1,j)

V(i-1,j-1)

V(i-1,j-2) Mismatch

V(i-1,j-1)

U(i-1,j-1)

V(i,j-1) V(i-1,j-1)
U(i-2,j)

U(i-2,j-1)

V(i,j-2)
3rd mismatch

2nd mismatch

ò � óôy÷ùø�ûüöiú
Case 1.1b

Fig. 9. Case 1.1.b in the proof of Lemma 2

of the right pad. Immediately, we have a mismatch on the portion q�rVt½jI��gyu�jI��w of
the right pad of

� 	 rVt�gyuRw , since q�rVt�jÕ��gyu�jÕ�:w>~�|Hr<tWj?�@gvu�j��:w ^�� � qsr<tWj���gyu¨jÓ��w
and

^�� � is
]-^�`

. Furthermore, tile
� 	 r<t�gvuRw will determine an incorrect value for theqsrVt�j���gyu�j���w portion of its top pad, resulting in a mismatch either on the bottom or

on the right pad of
� 	 r<t�gyu�z���w . Next consider case (1.1b) (Figure 9) when there is a

mismatch on the |Hr<t�j?�@gyu�j���w portion of the right pad of
� 	 rVt�gvuxw . This will result in

an incorrect value of |HrVt@jC��gyu�jC��w portion of
� 	 rVt�gyuRw ’s left pad (since

^�� 	 can detect
the incorrect value of |Hr<tNj �_gyuÔjA��w), leading to a further mismatch either on the right
pad or on the bottom pad of

� 	 r<tNzF��gvuxw .
(1.2) (Figure 10) Consider the case where the pad binding error is due to the in-

correct value of the middle portion qsrVtÄj���gyu�j��:w of the bottom pad of tile
� 	 rVt�gvuxw ,

but there is a correct match in the right portion qsr<tEjF��gvu�jÕ��w of tile
� 	 r<t�gyuRw (there

may also be the incorrect value of the left portion q�rVt�gyu�jF��w of the bottom pad of
tile

� 	 rVt�gvuxw). Since the value of q�rVtEjF��gyu�j���w is correct and qsr<tEjF��gyu�jF�:w is de-
termined by |HrVtÄjp�_gyu�jF�:w ^�� � qsrVt½jF��gvu�jp��w and

^�� � is
]-^�`

, we immediately
have that there must be a mismatch on the |�rVtEj��@gyu�jI��w portion of

� 	 rVt�gyuRw ’s right
pad, due to the incorrect value of |HrVtÄjp�_gyu�jF�:w portion of this pad. However, sinceqsrVt@jC��gyu½j4�:w�~l|Hr<t@j¶�@gvuÄj4�:w ^n� � q�rVt@j4��gyu½j¶��w , the value of qsrVt@jC��gyu½j4�:w (right
portion of its top pad) computed by

� 	 r<t�gvuRw must be incorrect, resulting in a further
mismatch either on the bottom or on the right pad of

� 	 rVt�gyuÏz��:w .
(1.3) Consider the case where the pad binding error is due to the incorrect value of

the left portion q�r<t�gyu�jA��w of the bottom pad of tile
� 	 rVt�gyuRw , but there are both correct

matches in the right portion qsr<tWjÕ��gvu�j?��w and middle portion q�rVt�jp��gyu�jp�:w of the
bottom pad of tile

� 	 rVt�gyuRw . Further consider case (1.3a) (Figure 11) when there is no
mismatch on the |HrVt�jÓ�@gvu�j���w portion of the right pad. Then

� 	 rVt�gyuRw must compute

		
		

������������
������������

���
���������
������������
������������

��
��
��
�� ��������������������

��������������������������������������
����������������������������

��
�
��
�

���������������������������� ����������
 � � � �

!�!�!�!�!!�!�!�!�!!�!�!�!�!!�!�!�!�!!�!�!�!�!!�!�!�!�!!�!�!�!�!
"�"�"�""�"�"�""�"�"�""�"�"�""�"�"�""�"�"�""�"�"�"

#�#�#�##�#�#�##�#�#�##�#�#�##�#�#�##�#�#�##�#�#�#
$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$

%�%�%�%�%%�%�%�%�%%�%�%�%�%%�%�%�%�%%�%�%�%�%%�%�%�%�%%�%�%�%�%
&�&�&�&&�&�&�&&�&�&�&&�&�&�&&�&�&�&&�&�&�&&�&�&�&

'�'�'�'�''�'�'�'�''�'�'�'�''�'�'�'�''�'�'�'�''�'�'�'�''�'�'�'�'
(�(�(�((�(�(�((�(�(�((�(�(�((�(�(�((�(�(�((�(�(�(

)�)�)�))�)�)�))�)�)�))�)�)�))�)�)�))�)�)�))�)�)�)
��*�**�*�*�**�*�*�**�*�*�**�*�*�**�*�*�**�*�*�*

+�+�+�+�++�+�+�+�++�+�+�+�++�+�+�+�++�+�+�+�++�+�+�+�++�+�+�+�+
,�,�,�,,�,�,�,,�,�,�,,�,�,�,,�,�,�,,�,�,�,,�,�,�,

U(i−1,j)

V(i+1,j)

V(i,j-1)

V(i,j)

V(i,j+1)

V(i-1,j)

ò � óô�ûüö�÷Ìø�ú ò � óÌô7÷ùøLú ò � óôRõsö�÷Ìø�ú

ò � óôy÷ùøEõsöiú

V(i,j-1) V(i-1,j)

V(i-1,j-1)

V(i-1,j-2)

V(i-1,j-1) Mismatch

U(i-1,j-1)

V(i,j-1) V(i-1,j-1)
U(i-2,j)

U(i-2,j-1)

V(i,j-2)

2nd mismatch

3rd mismatch

ò � óôy÷ùø�ûüöiú
Case 1.2

Fig. 10. Case 1.2 in the proof of Lemma 2

-�--�--�--�-
.�..�..�..�.

/�//�//�/
0�00�00�0
1�11�11�11�1
2�22�22�22�2

33
33
44
44

55
5
66
6

7�7�7�77�7�7�78�8�8�88�8�8�8
9�9�9�99�9�9�9:�:�:�::�:�:�:;�;�;�;;�;�;�;<�<�<�<<�<�<�< =�=�=>�>�>?�?�??�?�?@�@�@@�@�@A�A�AA�A�AB�B�BB�B�BCC

CC
DD
DD

E�E�E�E�EE�E�E�E�EE�E�E�E�EE�E�E�E�EE�E�E�E�EE�E�E�E�EE�E�E�E�EE�E�E�E�E
F�F�F�FF�F�F�FF�F�F�FF�F�F�FF�F�F�FF�F�F�FF�F�F�FF�F�F�F

G�G�G�GG�G�G�GG�G�G�GG�G�G�GG�G�G�GG�G�G�GG�G�G�GG�G�G�G
H�H�H�HH�H�H�HH�H�H�HH�H�H�HH�H�H�HH�H�H�HH�H�H�HH�H�H�H

I�I�I�I�II�I�I�I�II�I�I�I�II�I�I�I�II�I�I�I�II�I�I�I�II�I�I�I�II�I�I�I�I
J�J�J�JJ�J�J�JJ�J�J�JJ�J�J�JJ�J�J�JJ�J�J�JJ�J�J�JJ�J�J�J

K�K�K�K�KK�K�K�K�KK�K�K�K�KK�K�K�K�KK�K�K�K�KK�K�K�K�KK�K�K�K�KK�K�K�K�K
L�L�L�LL�L�L�LL�L�L�LL�L�L�LL�L�L�LL�L�L�LL�L�L�LL�L�L�L

M�M�M�M�MM�M�M�M�MM�M�M�M�MM�M�M�M�MM�M�M�M�MM�M�M�M�MM�M�M�M�M
N�N�N�NN�N�N�NN�N�N�NN�N�N�NN�N�N�NN�N�N�NN�N�N�N
O�O�O�OO�O�O�OO�O�O�OO�O�O�OO�O�O�OO�O�O�OO�O�O�O
P�P�P�PP�P�P�PP�P�P�PP�P�P�PP�P�P�PP�P�P�PP�P�P�P

U(i−1,j)

V(i+1,j)

V(i,j-1)

V(i,j)

V(i,j+1)

ò � óôy÷ùø�ûüöiú

ò � óô�ûüö�÷Ìø�ú ò � óÌô7÷ùøLú ò � óôRõsö�÷Ìø�ú

ò � óôy÷ùøEõsöiú

V(i,j-1) V(i-1,j)

V(i-1,j-1)

V(i-1,j-2)

V(i-1,j-1)

U(i-1,j-1)

V(i,j-1) V(i-1,j-1)
U(i-2,j)

U(i-2,j-1)

Case 1.3.a

Mismatch V(i,j-2)

V(i-1,j)

2nd mismatch

3rd mismatch

Fig. 11. Case 1.3.a in the proof of Lemma 2

a correct value for |HrVt½j���gyuHjl��w�~¸|Hr<t½j��@gyusjI�:w ^�� 	 q�rVt>j���gyuHj���w . � 	 r<t�gvuRw
further computes both an incorrect value of q�rVt�gyu�j���w portion of its top pad (sinceqsrVt�gvu�j���wS~�|Hr<tWj���gvu�j��:w ^�� � qsr<t�gvu�jÓ��w) and an incorrect value for q�rVt�gyu�j���w
portion of its left pad. The first incorrect value will result in a mismatch either on the
bottom or on the right pad of

� 	 rVt�gyu�z���w . The second incorrect value will result in a
mismatch either on the right or on the bottom pad of

� 	 rVtWzl��gyuRw . Next consider case
(1.3b) when there is a mismatch on the |Hr<t
jÏ�_gyuNj���w portion of the right pad of

� 	 rVt�gvuxw .
But this case cannot occur since both qsrVt�j���gyu�j���w and qsrVt�j���gyu�jÓ��w portions of� 	 rVt�gyuRw ’s bottom pad are correct, and qsr<t�j���gvu2j���wÄ~l|HrVt�jÏ�@gyu2j���w ^�� � q�rVt�j���gyu2jÔ��w ,
where

^�� � ~]-^n`
.

Q�Q�Q�QQ�Q�Q�QR�R�R�RR�R�R�RS�S�S�SS�S�S�ST�T�T�TT�T�T�T U�U�UU�U�U
V�V�VV�V�VW�WW�WW�W

X�XX�XX�X

YY
Y
ZZ
Z

[[
[
\\
\

]�]�]�]]�]�]�]^�^�^�^^�^�^�^ _�_�_`�`�`a�a�ab�b�b
cc
c
dd
d
e�ee�ee�ee�e
f�ff�ff�ff�f

g�gg�gg�g
h�hh�hh�h

i�i�i�ii�i�i�ii�i�i�ii�i�i�ii�i�i�ii�i�i�ii�i�i�i
j�j�j�jj�j�j�jj�j�j�jj�j�j�jj�j�j�jj�j�j�jj�j�j�j

k�k�k�k�kk�k�k�k�kk�k�k�k�kk�k�k�k�kk�k�k�k�kk�k�k�k�kk�k�k�k�k
l�l�l�ll�l�l�ll�l�l�ll�l�l�ll�l�l�ll�l�l�ll�l�l�l

m�m�m�m�mm�m�m�m�mm�m�m�m�mm�m�m�m�mm�m�m�m�mm�m�m�m�mm�m�m�m�m
n�n�n�nn�n�n�nn�n�n�nn�n�n�nn�n�n�nn�n�n�nn�n�n�n

o�o�o�o�oo�o�o�o�oo�o�o�o�oo�o�o�o�oo�o�o�o�oo�o�o�o�oo�o�o�o�o
p�p�p�pp�p�p�pp�p�p�pp�p�p�pp�p�p�pp�p�p�pp�p�p�p
q�q�q�qq�q�q�qq�q�q�qq�q�q�qq�q�q�qq�q�q�qq�q�q�q
r�r�r�rr�r�r�rr�r�r�rr�r�r�rr�r�r�rr�r�r�rr�r�r�r

s�s�s�s�ss�s�s�s�ss�s�s�s�ss�s�s�s�ss�s�s�s�ss�s�s�s�ss�s�s�s�s
t�t�t�tt�t�t�tt�t�t�tt�t�t�tt�t�t�tt�t�t�tt�t�t�t

U(i−1,j)

V(i+1,j)

V(i,j-1)

V(i,j) V(i-1,j)

ò � óôy÷ùø�ûüöiú

ò � óô�ûüö�÷Ìø�ú ò � óÌô7÷ùøLú ò � óôRõsö�÷Ìø�ú

ò � óôy÷ùøEõsöiú

V(i,j-1) V(i-1,j)

V(i-1,j-1)

V(i-1,j-2)

V(i-1,j-1)

U(i-1,j-1)

V(i,j-1) V(i-1,j-1)
U(i-2,j)

U(i-2,j-1)

Case 2.1 V(i,j+1)

Mismatch

3rd mismatch

V(i,j-2)

2nd mismatch

Fig. 12. Case 2.1 in the proof of Lemma 2

(2) Now consider the case where the pad binding error occurs on the right pad of� 	 rVt�gyuRw , but there is no binding error on the bottom pad of
� 	 r<t�gvuRw .

We note that since both qsrVt:j���gyuWj���w and q�r<t�j���gyuWj���w portions of the bottom pad
are correct, the |HrVtRj��@gvuEj �:w and q�rVtRj ��gvuEj �:w portions of the right pad must also be
correct, so we only need to consider the case (2.1) (Figure 12) where the binding error
is due to an incorrect value of the top portion |Hr<tRj��@gyuRw of the right pad of

� 	 r<t�gyuRw , but
there is no mismatch on other portions of the right pad of

� 	 rVt�gyuRw . First note an incorrect
value of |HrVt9j��_gyuRw will result in an incorrect value of the right portion qsrVt9j���gyu�j���w of
the top pad of

� 	 rVt�gyuRw . And this will lead to a further mismatch either between
� 	 r<t�gvuRw

and
� 	 rVt�gyu¨z���w or between

� 	 r<t�gyu�z���w and
� 	 r<tÄj���gvu{z���w . Next note that

� 	 r<t�gvuRw
must compute an incorrect value for the |Hr<t�j���gyuRw portion of its left pad, resulting in
yet another mismatch either between

� 	 rVt�gyuRw and
� 	 rVt�zI��gyuRw or between

� 	 r<t}zI��gvuRw
and

� 	 rVt�z���gyuÏz��:w .

We have thus proven that a mismatch in the right or bottom pad of
� 	 rVt�gyuRw results in

at least two further mismatches. And given the location of the first mismatch, the loca-
tion of the second mismatch can be determined among at most three locations (between� 	 rVt�gyuRw and

� 	 rVtWjp��gyuRw , or between
� 	 r<t�gvuRw and

� 	 r<t�gyuÔzF��w , or between
� 	 rVt�gyuÏz��:w

and
� 	 rVt2je��gyu�zÓ�:w). Furthermore, given the locations of the first two mismatches, the

location of the third mismatch can be determined among at most five locations (between� 	 rVt�gyuRw and
� 	 rVt�z���gyuRw , between

� 	 r<t�z���gyuRw and
� 	 rVt�z���gvu�j��:w , between

� 	 r<t�gvuRw
and

� 	 rVt�gyu�z?�:w , between
� 	 r<t�gyu>zÓ��w and

� 	 rVt-je��gvu>zÓ��w , or between
� 	 rVt@z?��gyuRw and� 	 rVt}z���gyuÔzF��w).

We again calculate the error rate � 	 for our versioin 2 construction using thermody-
namic analysis. The key observation here is that the number of assemblies with exactly
one mismatch or exactly two mismatches are Y . In addition, since one pad mismatch
is linked with a second mismatch at one of three possible locations, and each of these
three second mismatch is in turn linked with a third mismatch at one of five possible
locations, we have � � ~��9Å �� �S��~I�Y�Å . As such, we have

Pr r7¼ � wE~ ��>zp� � ¡ ¢N£ ²y³ zË� 	 ¡ ¢ 	 £ ²7³ zp� � ¡ ¢ � £ ²7³ zFhhÌh:zp� É ¡ ¢ É £ ²y³ (12)

» ��>zp� � ¡ ¢ � £�²7³ (13)

~ ��>zË�YnÅ ¡ ¢ � £ ²7³ (14)»��ªjA�YnÅ ¡ ¢ � £�²7³ g (15)

where ¼ � is the unique error-less assembly.
Again, we also have

Pr r<¼ � wE~ÿr�rU�þje� 	 w 	 w É »��ªjA�nÅ�� 	 h (16)

Putting together equations 15 and 16, we have � 	 ~ �:� ¡ ¢ � £W²y³ ~ ���n��� . Thus we
have shown,

Theorem 2. The error rate � 	 for assemblies constructed from version 2 error resilient
tiles is ���n��� , where � is the error rate for the corresponding assembly system with no
error correction.

Note that the growth rate
� 	 »�Î ¡ ¢ 	 £�²7³ »�rU�:®@����wU	vui�
Î½r<� 	 wU	vui� .

Note that each pad encodes a tuple of three bits, and the values of the left pad, the
top pad, the middle portion of the right pad, and the middle portion of the bottom pad
each depend only on the values of the top portion and the bottom portion of the right
pad and the right and left portion of the bottom pad. As such, the tile type depends on
only � binary bits, and hence only �xw ~k� � tile types are required in addition to the
initial frames at the bottom and to the right (requiring � additional tiles).

5 Computer Simulation

We first give below the construction of a Sierpinsky triangle using our error resilient
assembly version 1, and then perform empirical study of the error rates using computer

simulation of assembly of the Sierpinsky triangle and compare the results with those of
Winfree’s [25].

We show below the construction of a binary counter and a Sierpinsky triangle. For
each of them we use a total of 12 tiles, including 8 counter tiles and 4 frame tiles as
shown in Figure 13 and Figure 14.

We would like to again emphasize that although we give the construction of the tiles
in previous sections with each pad having two or three distinct portions, a mismatch on
any portion of a pad results in a total mismatch of the whole pad instead of a partial
mismatch of only that portion. Hence, in Figure 13 and Figure 14, we use a distinct
label for each pad, emphasizing the wholeness of the pad.

Scccc

a

a

a

b

b

aS b c

0 1

0 0 0

0

0

0

0

1

1

1 1

1

1 10

0 0

0

000 0

0

1 1

1

0
0

0
0

0
0

00

00

1
1

1
1

00

0
0

0
0

11

0
1

10

01

0
10

1

0
0

0
1

11

0
0

01

0
0

00

1
1

01

0
1

00 00 00 00

0
0

0
0

0

0
0

0
0

0
0

0
0

00

00

00

1
1

1
1

0
0

0
0

0
0

0
0

1
1

1
1

0
1

01

01

00

01

00

00

0

01

00

00

00

00

00

11

0
1

10

Assembled Binary CounterPads

Tiles
0
1

10

1
1

01 11

0
1

01 10

0
1

0
1

11

10

0
0

1
1 0

1

1001

00
0
1

0
0

1101
0
1

10

0
1

1
10

1

10

Fig. 13. The construction of a binary counter using error resilient assemblies version 1. The pads
and the tile set are shown on the left and the assembled binary counter is shown on the right. The
pads of strength 2 have black borders while the strength 1 pads are border-less. The seed tile is
labeled with S. Tiles a, b and c are the other frame tiles

For the simulation study, we used the Xgrow simulator by Winfree [25] and simu-
lated the assembly of Sierpinsky triangles for the following cases:

– assembly without any error correction,
– assembly using Winfree’s ��bK� proofreading tile set,
– assembly using Winfree’s Hbü proofreading tile set,
– assembly using our error resilient scheme version 1,

� � (construction in Figure 14),
– assembly using our error resilient scheme version 2,

� 	 (construction not shown).

We performed simulations of the assembly process of a target aggregate of �_����b>�@�:�
tiles. A variable a is defined as the largest number of tiles assembled without any
permanent error in the assembly in �nYx� of all test cases. The variations in the value
of a are measured as we increase the value of the probability of a single mismatch
in pads (�) by changing the values of ¦ §ª© and ¦ ´Uµ , where ¦ §ª© and ¦ ´Uµ are the free
energies [25]. As suggested in [25], the experiments were performed near equilibrim,
where ¦¨§ª©�»F�n¦�´�µ , to achieve optimal error rate ��»I� ¡ ¢2£�²7³ .

Figure 15 shows the variation in a with «zyx{ µ � . From the figure it can be seen that
the performance of our version 1 (

� �) construction is comparable to Winfree’s ��bA�

Scccc

a

a

a

b

b

aS b c

0

0

0

0

1

1 1

1

0

0

000

0

0

00

0

0

1

1

1

1

11

1

1

1 1

0

0
01

0
1

0

1
1

0

0
0

0

0
1

1

1
1

0

1
1

0

11

00

1

01

1

11

11

1

00

0
0

01

00

01

0

01

00

10

00

0
1

01

11 11

11
0

1
1

00

1
1 0

0
1

00

1
1

1

01

00

0
0

0
0

1
1

0
1

11

01

1
1

0

0
1

01

1

11

0
1

01

0
0

11100100

1

10

0
10

1
0
0

00

11

11

10

Tiles

0110

0
0 0

1

10

0
1

10

0
1

0
1

0

0

1

10

10

0
1

0
1

0
1

10

0
0

1

1

1

1

1

Sierpinsky TilingPads

11

00 11
0

Fig. 14. The construction of a Sierpinsky triangle using error resilient assemblies version 1. The
pads and the tile set are shown on the left and the assembled Sierpinsky triangle is shown on the
right. The pads of strength 2 have black borders while the strength 1 pads are border-less. The
seed tile is labeled with S. Tiles a, b, and c are the other frame tiles

proofreading tile set construction, while our version 2 (
�) performs comparably to

Winfree’s HbK proofreading tile set construction.

6 Discussion

We report a theoretical design that can reduce mismatch errors in algorithmic DNA
tiling without increasing the size of assembled structure. We have proved the correct-
ness of our result using theoretical analysis and computer simulation. Next, we will
further test the effectiveness of our construction using wet lab experimental demonstra-
tion. The self-assembled Sierpinsky crystals [16] and binary counters [1] provide an
amiable platform for experimentally evaluating the effectiveness of our proposed meth-
ods. Another candidate system is the “4x4” tile system [29], and we have obtained some
preliminary results in assembling binary counter crystals using this system.

There are also some open theoretical problems in our proposed system. First, in the
proof of this paper, we require

^�� � to be
]-^�`

, for concreteness. However, note that our
constructions apply to more general Boolean arrays in which

^�� � is an input sensitive
operator, i.e. the output changes with the change of exactly one input. Second, we note
that

^n� � and
^�� 	 are both the function

]-^�`
for the Sierpinsky triangle but this is

not true for the assembly for a binary counter of N bits, since
^n� 	 is the logical ZR[x\

in that example. It is an open question whether our above error-resilient constructions
can be further simplified in the case of special computations, such as the Sierpinsky
triangle, where the

^�� � and
^�� 	 are the same function such as

]-^�`
. Finally, another

open question is to extend the construction into a more general construction such that
the error probability can be decreased to �}| for any given � , or alternatively, to prove an
upper bound for � .

−6 −5.8 −5.6 −5.4 −5.2 −5 −4.8 −4.6 −4.4 −4.2 −4
0

0.5

1

1.5

2

2.5

3

3.5
x 104

log(probability of single mismatch)

S
iz

e
of

 e
rr

or
−f

re
e

ag
gr

eg
at

e

Size of error−free aggregate vs Probability of single mismatch

No error correction
Our T

1
 construction

Winfree 2x2 construction
Our T

2
 construction

Winfree 3x3 construction

Fig. 15. A graph showing the variation of ~ v.s. increasing value of error (probability of single
mismatch) �
References

1. Robert Barish, Paul W. K. Rothemund, and Erik Winfree. Algorithmic self-assembly of a
binary counter using DNA tiles. 2005. In preparation.

2. B. A. Bondarenko. Generalized Pascal Triangles and Pyramids, Their Fractals, Graphs and
Applications. The Fibonacci Association, 1993. Translated from Russion and edited by R.
C. Bollinger.

3. N. Chelyapov, Y. Brun, M. Gopalkrishnan, D. Reishus, B. Shaw, and L. Adleman. DNA
triangles and self-assembled hexagonal tilings. J. Am. Chem. Soc., 126:13924–13925, 2004.

4. H. L. Chen, Q. Cheng, A. Goel, M. D. Huang, and P. M. de Espanes. Invadable self-assembly:
Combining robustness with efficiency. In Proceedings of the 15th annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 890–899, 2004.

5. H. L. Chen and A. Goel. Error free self-assembly using error prone tiles. In DNA Based
Computers 10, pages 274–283, 2004.

6. K. Fujibayashi and S. Murata. A method for error suppression for self-assembling DNA
tiles. In DNA Based Computing 10, pages 284–293, 2004.

7. T. H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif, and N. C. Seeman. The
construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am.
Chem. Soc., 122:1848–1860, 2000.

8. M. G. Lagoudakis and T. H. LaBean. 2-D DNA self-assembly for satisfiability. In DNA
Based Computers V, volume 54 of DIMACS, pages 141–154. American Mathematical Soci-
ety, 2000.

9. D. Liu, M. S. Wang, Z. X. Deng, R. Walulu, and C. D. Mao. Tensegrity: Construction of
rigid DNA triangles with flexible four-arm dna junctions. J. Am. Chem. Soc., 126:2324–
2325, 2004.

10. Dage Liu, Sung Ha Park, John H. Reif, and Thomas H. LaBean. DNA nanotubes self-
assembled from triple-crossover tiles as templates for conductive nanowires. Proc. Natl.
Acad. Sci. USA, 101:717–722, 2004.

11. C. Mao, T. H. LaBean, J. H. Reif, and N. C. Seeman. Logical computation using algorithmic
self-assembly of DNA triple-crossover molecules. Nature, 407:493–496, 2000.

12. C. Mao, W. Sun, and N. C. Seeman. Designed two-dimensional DNA holliday junction
arrays visualized by atomic force microscopy. J. Am. Chem. Soc., 121:5437–5443, 1999.

13. J. H. Reif. Local parallel biomolecular computation. In H. Rubin and D. H. Wood, editors,
DNA-Based Computers 3, volume 48 of DIMACS, pages 217–254. American Mathematical
Society, 1999.

14. P. W. K. Rothemund and E. Winfree. The program-size complexity of self-assembled squares
(extended abstract). In Proceedings of the thirty-second annual ACM symposium on Theory
of computing, pages 459–468. ACM Press, 2000.

15. Paul W.K. Rothemund, Axel Ekani-Nkodo, Nick Papadakis, Ashish Kumar, Deborah Kuch-
nir Fygenson, and Erik Winfree. Design and characterization of programmable DNA nan-
otubes. J. Am. Chem. Soc., 126:16344–16353, 2004.

16. Paul W.K. Rothemund, Nick Papadakis, and Erik Winfree. Algorithmic self-assembly of
DNA sierpinski triangles. PLoS Biology 2 (12), 2:e424, 2004.

17. Rebecca Schulman and Erik Winfree. Programmable control of nucleation for algorithmic
self-assembly. In DNA Based Computers 10, LNCS, 2005.

18. N. C. Seeman. DNA in a material world. Nature, 421:427–431, 2003.
19. J. von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable

components. Autonomous Studies, pages 43–98, 1956.
20. H. Wang. Proving theorems by pattern recognition ii. Bell Systems Technical Journal, 40:1–

41, 1961.
21. E. Winfree. Complexity of restricted and unrestricted models of molecular computation. In

R. J. Lipton and E. B. Baum, editors, DNA Based Computers 1, volume 27 of DIMACS,
pages 187–198. American Mathematical Society, 1996.

22. E. Winfree. On the computational power of DNA annealing and ligation. In R. J. Lipton
and E. B. Baum, editors, DNA Based Computers 1, volume 27 of DIMACS, pages 199–221.
American Mathematical Society, 1996.

23. E. Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, 1998.
24. E. Winfree. Simulation of computing by self-assembly. Technical Report 1998.22, Caltech,

1998.
25. E. Winfree and R. Bekbolatov. Proofreading tile sets: Error correction for algorithmic self-

assembly. In DNA Based Computers 9, volume 2943 of LNCS, pages 126–144, 2004.
26. E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman. Design and self-assembly of two-

dimensional DNA crystals. Nature, 394(6693):539–544, 1998.
27. E. Winfree, X. Yang, and N. C. Seeman. Universal computation via self-assembly of DNA:

Some theory and experiments. In L. F. Landweber and E. B. Baum, editors, DNA Based Com-
puters II, volume 44 of DIMACS, pages 191–213. American Mathematical Society, 1999.

28. H. Yan, L. Feng, T. H. LaBean, and J. H. Reif. Parallel molecular computation of pair-wise
xor using DNA string tile. J. Am. Chem. Soc., 125(47), 2003.

29. H. Yan, T. H. LaBean, L. Feng, and J. H. Reif. Directed nucleation assembly of DNA tile
complexes for barcode patterned DNA lattices. Proc. Natl. Acad. Sci. USA, 100(14):8103–
8108, 2003.

30. H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean. DNA-templated self-
assembly of protein arrays and highly conductive nanowires. Science, 301(5641):1882–1884,
2003.

